Cell receptor has proclivity for T helper 9 cells, airway inflammation

July 29, 2012

A research team led by Xian Chang Li, MD, PhD, Brigham and Women's Hospital (BWH) Transplantation Research Center, has shed light on how a population of lymphocytes, called CD4+ T cells, mature into various subsets of adult T helper cells.

In particular, the team uncovered that a particular molecule, known as OX40, is a powerful inducer of new T that make copious amounts of interleukin-9 (IL-9) (and therefore called TH9 cells) in vitro; such TH9 cells are responsible for ongoing inflammation in the airways in the lungs in vivo.

The study will be published online in on July 29, 2012.

In their studies, the researchers found that mice with hyper-active OX40 activities had signs of , particularly in tissues lining the airway. A high amount of cells—as much as 30 percent—in these tissues were mucin-producing cells. Mucin-producing cells produce gel-like secretions that, when combined with other secretions, can form mucus or saliva.

The results mirrored previous studies of mice who over expressed IL-9 in the lung airways. Results from additional experiments confirmed that OX40 triggers both TH9 cell and IL-9 production, thereby leading to airway inflammation.

"These findings may have broad impact on how to treat chronic inflammation, such as allergic inflammation and chronic allograft rejection after transplantation, since the inflammatory texture organized by TH9 cells tends to be different and ongoing." said Li.

In addition to this translational finding, Li and his team made strides in better understanding OX40's role in the molecular mechanisms of the pathway responsible for TH9 cell induction.

According to Li, the revelation that OX40 promotes TH9 cells through TRAF6 (a protein that mediates cell signaling) and the activation of a non-canonical NF-kB pathway will point to new opportunities in drug discovery and development in treatment of TH9-related diseases.

Explore further: Scientists find molecule in immune system that could help treat dangerous skin cancer

Related Stories

Scientists find molecule in immune system that could help treat dangerous skin cancer

July 8, 2012
Researchers from Brigham and Women's Hospital (BWH) have made a groundbreaking discovery that will shape the future of melanoma therapy. The team, led by Thomas S. Kupper, MD, chair of the BWH Department of Dermatology, and ...

Study discovers new targets for treating inflammatory, autoimmune diseases

October 7, 2011
Researchers have discovered a cellular pathway that promotes inflammation in diseases like asthma, rheumatoid arthritis, psoriasis, inflammatory bowel disease, and multiple sclerosis. Understanding the details of this pathway ...

Transcription factor regulates protein that dampens immune responses

June 17, 2011
Interleukin-10 (IL-10) is an anti-inflammatory cytokine protein that reduces immune responses and staves off autoimmune disease. Now, a research team led by Masato Kubo at the RIKEN Research Center for Allergy and Immunology, ...

Recommended for you

Gene immunotherapy protects against multiple sclerosis in mice

September 21, 2017
A potent and long-lasting gene immunotherapy approach prevents and reverses symptoms of multiple sclerosis in mice, according to a study published September 21st in the journal Molecular Therapy. Multiple sclerosis is an ...

New academic study reveals true extent of the link between hard water and eczema

September 21, 2017
Hard water damages our protective skin barrier and could contribute to the development of eczema, a new study has shown.

Exposure to pet and pest allergens during infancy linked to reduced asthma risk

September 19, 2017
Children exposed to high indoor levels of pet or pest allergens during infancy have a lower risk of developing asthma by 7 years of age, new research supported by the National Institutes of Health reveals. The findings, published ...

Cholesterol-like molecules switch off the engine in cancer-targeting 'Natural Killer' cells

September 18, 2017
Scientists have just discovered how the engine that powers cancer-killing cells functions. Crucially, their research also highlights how that engine is fuelled and that cholesterol-like molecules, called oxysterols, act as ...

MicroRNA helps cancer evade immune system

September 18, 2017
The immune system automatically destroys dysfunctional cells such as cancer cells, but cancerous tumors often survive nonetheless. A new study by Salk scientists shows one method by which fast-growing tumors evade anti-tumor ...

'Exciting' discovery on path to develop new type of vaccine to treat global viruses

September 15, 2017
Scientists at the University of Southampton have made a significant discovery in efforts to develop a vaccine against Zika, dengue and Hepatitis C viruses that affect millions of people around the world.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.