Cells derived from debrided burn tissue may be useful for tissue engineering

July 11, 2012

A research team in the Netherlands has found that cells from burn eschar, the non-viable tissue remaining after burn injury and normally removed to prevent infection, can be a source of mesenchymal cells that may be used for tissue engineering. Their study compared the efficacy of those cells to adipose (fat)-derived stem cells and dermal fibroblasts in conforming to multipotent mesenchymal stromal cell (MSC) criteria.

Their study is published in the current issue of (21:5), now freely available on-line.

"In this study we used mouse models to investigate whether eschar-derived cells fulfill all the criteria for multipotent mesenchymal as formulated by the International Society for (ISCT)," said study co-author Dr. Magda M.W. Ulrich of the Association of Dutch Burn Centres, The Netherlands. "The study also assessed the differentiation potential of MSCs isolated from normal and and compared them to cells derived from burn eschar."

According to the researchers, advances in burn treatment have meant that the percentage of patients surviving severe burn injuries is increasing. This escalating survival rate has also increased the number of people who are left with burn scars, which lead to functional problems with the skin, such as contracture, and the social and psychological aspects of disfigurement.

Tissue engineering to rebuild the skin is the most promising approach to solving these problems. However, two problems arise with tissue engineering – the source of the cells and the design of the scaffold aimed at creating a microenvironment to guide cells toward tissue regeneration.

"The choice of cells for skin tissue engineering is vital to the outcome of the healing process," said Dr. Ulrich. "This study used mouse models and eschar tissues excised between 11 and 26 days after burn injury. The delay allowed time for partial thickness burns to heal, a process that is a regular treatment option in the Netherlands and rest of Europe."

The researchers speculated that during this time the severely damaged tissues could attract from the surrounding tissues, as elevated levels of MSCs have been detected in the blood of burn victims.

"MSCs can only be beneficial to tissue regeneration if they differentiate into types locally required in the wound environment," noted Dr. Ulrich. "We concluded that eschar-derived MSCs represent a population of multipotent stem cells. The origin of the cells remains unclear, but their resemblance to adipose-derived stem cells could be cause for speculation that in deep burns the subcutaneous adipose tissue might be an important stem cell source for wound healing."

The researchers concluded that more research is needed to identify the origins of the stem cells they found in burn eschar, their possible link to myofibroblasts, and how their function is influenced by the wound environment.

"This study demonstrates that the body's attempts to heal itself frequently require additional help to maximize the impact of these efforts," said Dr. Amit N. Patel, director of cardiovascular regenerative medicine at the University of Utah and section editor for Cell Transplantation. "Enhancing the endogenous production of MSCs, or transplantation of exogenous cells following burn injury, could prove useful in the remodeling of burnt tissue. Determining the original source of the cells is likely to be an important factor in developing an autologous (or otherwise) therapy."

Explore further: Cell transplantation of lung stem cells has beneficial impact for emphysema

More information: van der Veen, V. C.; Vlig, M.; van Milligen, F. J.; de Vries, S. I.; Middelkoop, E.; Ulrich, M. M. W. Stem Cells in Burn Eschar. Cell Transplant. 21(5):933-942; 2012. http://www.ingentaconnect.com/content/cog/ct/

Related Stories

Cell transplantation of lung stem cells has beneficial impact for emphysema

June 4, 2012
When autologous (self-donated) lung-derived mensenchymal stem cells (LMSCs) were transplanted endoscopically into 13 adult female sheep modeled with emphysema, post-transplant evaluation showed evidence of tissue regeneration ...

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.