How the fluid between cells affects tumors

July 25, 2012
This image diagrams the phenomena this experiment replicates, interstitial fluid flow. Credit: JoVE, the Journal of Visualized Experiments

There are many factors that affect tumor invasion, the process where a tumor grows beyond the tissue where it first developed. While factors like genetics, tissue type and environmental exposure affect tumor metastasis and invasion, physical forces like fluid flow remain a poorly understood component of tumor invasion.

A new video article in JoVE, the Journal of Visualized Experiments, describes a that allows researchers to study and test the of a growing tumor. The technique is valuable because it allows scientists to assay attributable to extracellular fluid flow in vitro and better understand the effects of such physical changes on a tumor. The study focuses specifically on a type of extracellular fluid called interstitial fluid, which flows between cells in a tissue. This procedure is a significant first step to develop an in vitro system that better mimics what happens within a growing tumor in the patient.

"Our goal is to understand how physical forces affect how behave. By understanding factors influencing why a tumor does or does not spread, we will have a much better understanding of which therapies will affect the tumor," said the article's author Dr. Adrian Shieh of Drexel University.

As tumors grow, they promote , or growth of new blood vessels, within the tumor itself and the surrounding tissue. Due to the leaky nature of these new blood vessels, there is an increase in the interstitial fluid pressure and flow. Dr. Shieh notes that current research approaches and therapies are not designed for targeting, addressing or understanding these physiological changes. The procedure published in JoVE demonstrates a better way to measure and understand the effects of interstitial fluid flow on tumor cells.

To mimic this physiological process, cells are embedded in a collagen matrix and pressure is applied to the liquid environment. This pressure causes the liquid to flow around the cell, mimicking in vivo conditions of a developing tumor. This allows scientists to study tumor growth and evaluate potential new therapies on cells in culture systems that more closely resemble physiological conditions.

Dr. Shieh hopes that publication of this article in JoVE's video format will bring more awareness to the study of interstitial in tumor cells and that it will demonstrate an accessible system to study the phenomenon. He emphasizes, "For many new techniques, even when accompanied by a detailed text protocol, it is very difficult for someone to pick up the procedure and correctly perform the assay. Tremendous expertise and hours of practice are needed to successfully complete this procedure. This multimedia publication format helps demonstrate the finesse required to perform this technique."

Explore further: Tumor environment keeps tumor-fighting T cells away

More information: Shieh et. al.: www.jove.com/video/4159/three- … or-measuring-effects

Related Stories

Tumor environment keeps tumor-fighting T cells away

September 19, 2011
Tumors have an arsenal of tricks to help them sidestep the immune system. A study published on September 19 in the Journal of Experimental Medicine reveals a new trick -- the ability to keep tumor-fighting T cells out by ...

Researchers create cellular automation model to study complex tumor-host role in cancer

March 27, 2012
Cancer remains a medical mystery – despite all of the research efforts devoted to understanding and controlling it. The most sought-after tumor model is one that would be able to formulate theoretical and computational ...

Recommended for you

What does hair loss have to teach us about cancer metastasis?

December 15, 2017
Understanding how cancer cells are able to metastasize—migrate from the primary tumor to distant sites in the body—and developing therapies to inhibit this process are the focus of many laboratories around the country. ...

Cancer immunotherapy may work better in patients with specific genes

December 15, 2017
Cancer cells arise when DNA is mutated, and these cells should be recognized as "foreign" by the immune system. However, cancer cells have found ways to evade detection by the immune system.

Scientists pinpoint gene to blame for poorer survival rate in early-onset breast cancer patients

December 15, 2017
A new study led by scientists at the University of Southampton has found that inherited variation in a particular gene may be to blame for the lower survival rate of patients diagnosed with early-onset breast cancer.

Scientists unlock structure of mTOR, a key cancer cell signaling protein

December 14, 2017
Researchers in the Sloan Kettering Institute have solved the structure of an important signaling molecule in cancer cells. They used a new technology called cryo-EM to visualize the structure in three dimensions. The detailed ...

'Bet hedging' explains the efficacy of many combination cancer therapies

December 14, 2017
The efficacy of many FDA-approved cancer drug combinations is not due to synergistic interactions between drugs, but rather to a form of "bet hedging," according to a new study published by Harvard Medical School researchers ...

Liquid biopsy results differed substantially between two providers

December 14, 2017
Two Johns Hopkins prostate cancer researchers found significant disparities when they submitted identical patient samples to two different commercial liquid biopsy providers. Liquid biopsy is a new and noninvasive alternative ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.