NIH team describes protective role of skin microbiota

July 26, 2012

A research team at the National Institutes of Health has found that bacteria that normally live in the skin may help protect the body from infection. As the largest organ of the body, the skin represents a major site of interaction with microbes in the environment.

Although immune cells in the protect against harmful organisms, until now, it has not been known if the millions of naturally occurring in the skin—collectively known as the skin —also have a beneficial role. Using mouse models, the NIH team observed that commensals contribute to protective immunity by interacting with the immune cells in the skin. Their findings appear online on July 26th in Science.

The investigators colonized germ-free mice (mice bred with no naturally occurring microbes in the gut or skin) with the human skin commensal Staphylococcus epidermidis. The team observed that colonizing the mice with this one species of good enabled an immune cell in the mouse skin to produce a cell-signaling molecule needed to protect against harmful microbes. The researchers subsequently infected both colonized and non-colonized germ-free mice with a parasite. Mice that were not colonized with the bacteria did not mount an effective immune response to the parasite; mice that were colonized did.

In separate experiments, the team sought to determine if the presence or absence of commensals in the gut played a role in skin immunity. They observed that adding or eliminating beneficial bacteria in the gut did not affect the immune response at the skin. These findings indicate that microbiota found in different tissues—skin, gut, lung—have unique roles at each site and that maintaining good health requires the presence of several different sets of commensal communities.

This study provides new insights into the protective role of skin commensals, and demonstrates that skin health relies on the interaction of commensals and immune cells. Further research is needed, say the authors, to determine whether skin disorders such as eczema and psoriasis may be caused or exacerbated by an imbalance of skin commensals and potentially harmful microbes that influence the skin and its .

Explore further: Biodiversity loss may cause increase in allergies and asthma

More information: S Naik et al. Compartmentalized control of skin immunity by resident commensals. Science. DOI: 10.1126/science.1225152 (2012).

Related Stories

Biodiversity loss may cause increase in allergies and asthma

May 7, 2012
Declining biodiversity may be contributing to the rise of asthma, allergies, and other chronic inflammatory diseases among people living in cities worldwide, a Finnish study suggests. Emerging evidence indicates that commensal ...

Gatekeeper signal controls skin inflammation

January 26, 2012
A new study unravels key signals that regulate protective and sometimes pathological inflammation of the skin. The research, published online on January 26th in the journal Immunity by Cell Press, identifies a "gatekeeper" ...

Double duty: Versatile immune cells play dual roles in human skin

May 3, 2012
A new study helps to resolve an ongoing controversy about whether Langerhans cells (LCs) in human skin function to suppress the immune response and promote tolerance to normal human skin and its "friendly" microbial flora ...

Good bugs gone bad: Gut immune cells keep beneficial microbes in their place

June 6, 2012
The healthy human intestine is colonized with over 100 trillion beneficial, or commensal, bacteria of many different species. In healthy people, these bacteria are limited to the intestinal tissues and have a number of helpful ...

Recommended for you

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Estrogen discovery could shed new light on fertility problems

December 12, 2017
Estrogen produced in the brain is necessary for ovulation in monkeys, according to researchers at the University of Wisconsin-Madison who have upended the traditional understanding of the hormonal cascade that leads to release ...

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

3-D printed microfibers could provide structure for artificially grown body parts

December 12, 2017
Much as a frame provides structural support for a house and the chassis provides strength and shape for a car, a team of Penn State engineers believe they have a way to create the structural framework for growing living tissue ...

Team identifies DNA element that may cause rare movement disorder

December 11, 2017
A team of Massachusetts General Hospital (MGH) researchers has identified a specific genetic change that may be the cause of a rare but severe neurological disorder called X-linked dystonia parkinsonism (XDP). Occurring only ...

Protein Daple coordinates single-cell and organ-wide directionality in the inner ear

December 11, 2017
Humans inherited the capacity to hear sounds thanks to structures that evolved millions of years ago. Sensory "hair cells" in the inner ear have the amazing ability to convert sound waves into electrical signals and transmit ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.