The RHAU helicase: A key player in blood formation

July 31, 2012
The RHAU helicase: A key player in blood formation

Scientists at the Friedrich Miescher Institute for Biomedical Research have discovered that the helicase RHAU, a protein that can resolve complex structures in both DNA and RNA molecules, is essential for early embryonic development. Mice that specifically lack RHAU in haematopoietic stem cells – which ultimately give rise to all cellular components of blood – develop severe anaemia. The underlying causes are a dramatically reduced half-life of red blood cells as well as impaired cell division of haematopoietic progenitor cells.

EPO, in full erythropoietin, has gained notoriety, as certain athletes follow strenuous practice routines to boost their body’s own EPO levels, or go even beyond what is fair in sports. This is in stark contrast to that lack the RHAU helicase in blood precursor cells who develop seemingly effortlessly and without fault an astounding 800 fold increase of their EPO levels. However, while EPO drives the production of mature red and thus helps to improve physical performance in sportsmen, Rhau-null mice paradoxically suffer from anaemia.

In a process called haematopoiesis, all cellular blood components, namely red and white blood cells, derive from haematopoietic (HSC), which predominantly reside in the . The DEAH helicase RHAU, first described by the group of Yoshi Nagamine at the Friedrich Miescher Institute for Biomedical Research, is highly expressed in lymphoid and bone marrow cells. It is the only known helicase that can resolve both RNA and DNA G-quadruplex structures (G4). G4 structures naturally occur in guanine-rich DNA and RNA stretches, and seem to play a role in gene regulation, as recent evidence suggests.

To assess the biological function of RHAU in haematopoiesis, the former FMI PhD student Janice Lai and her colleagues at the Friedrich Miescher Institute for worked with mice that lacked the RHAU in HSCs and in all cells derived thereof. These mice developed severe anaemia with drastically reduced levels of red blood cells and haemoglobin levels. Bone marrow transplantation experiments revealed that the observed defect was caused by the blood precursor cells themselves rather than their environment. The scientists subsequently discovered that in the absence of RHAU, the half-life of mature red blood cells was reduced by 50%, accounting at least in part for the observed anaemia. As a consequence of the anaemia, EPO levels rise to boost the production of red blood cells. Accordingly, in Rhau-null mice EPO levels skyrocketed to an 800 fold increase, but to no avail. While the earliest progenitor cell population in the formation of red blood cells, termed ProE, was strongly increased, progenitor cell numbers declined with every step during the maturation of erythrocytes. Thus, in the absence of RHAU and despite the high levels of EPO, the differentiation and maturation process of red blood cells was dramatically impaired. While the differentiation defect was most prominent at the ProE stage, it was also present in other progenitor cell populations including those giving rise to white blood cells. Additional bone marrow transplantation experiments revealed that wild type HSCs readily out-competed Rhau-null HSCs to reconstitute both red and white blood cells. These findings further supported the hypothesis that RHAU is essential for haematopoietic progenitor expansion and their differentiation potential in a cell autonomous manner.

Lastly, the scientists discovered that ProE lacking RHAU proliferate at substantially lower rates. Transcriptome analysis of wild type and RHAU-deficient ProE cells revealed that a significant fraction of RHAU-regulated genes contain a G4 motif in their promoter region. Therefore, the authors of the study conclude that RHAU may regulate transcription of a distinct set of genes via its DNA G4 resolvase activity.

Taken together, this study provides the first piece of evidence that a DEAH helicase is essential for haematopoiesis in mammals.

Explore further: Hormone reduces risk of heart failure from chemotherapy

More information: Lai JC, et al. (2012) The DEAH-box helicase RHAU is an essential gene and critical for mouse hematopoiesis. Blood 119:4291-300

Related Stories

Hormone reduces risk of heart failure from chemotherapy

August 4, 2011
Recent studies have shown that the heart contains cardiac stem cells that can contribute to regeneration and healing during disease and aging. However, little is known about the molecules and pathways that regulate these ...

The doping-drug Epo has an impact in the brain

June 11, 2012
Sportsmen and women dope with the blood hormone Epo to enhance their performance. Researchers from the University of Zurich now discovered by animal testing that Epo has a performance-enhancing effect in the brain shortly ...

Recommended for you

Team finds link between backup immune defense, mutation seen in Crohn's disease

July 27, 2017
Genes that regulate a cellular recycling system called autophagy are commonly mutated in Crohn's disease patients, though the link between biological housekeeping and inflammatory bowel disease remained a mystery. Now, researchers ...

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.