Novel technique for delivering multiple cancer treatments may solve hurdle for combinatorial drug therapies

July 15, 2012, National Science Foundation
This illustration depicts a nanolipogel, developed at Yale University with NSF support, administering its immunotherapy cargo. The light-blue spheres within the blood vessels and the cutaway sphere in the foreground, are the nanolipogels (NLGs). As the NLGs break down, they release IL-2 (the green specks), which helps recruit and activate a body's immune response (the purple, sphere-like cells). The tiny, bright blue spheres are the additional treatment, a cancer drug that inhibits TGF-beta (one of the cancer's defense chemicals). Credit: Nicolle Rager Fuller, NSF

Cancers are notorious for secreting chemicals that confuse the immune system and thwarting biological defenses.

To counter that effect, some cancer treatments try to neutralize the cancer's chemical arsenal and boost a patient's --though attempts to do both at the same time are rarely successful.

Now, researchers have developed a novel system to simultaneously deliver a sustained dose of both an immune-system booster and a chemical to counter the cancer's , resulting in a powerful therapy that, in mice, delayed , sent tumors into and dramatically increased .

The researchers, all from Yale University, report their findings in the July 15, 2012, issue of .

The new incorporates well-studied drugs, but delivers them using nanolipogels (NLGs), a new drug transport technology the researchers designed. The NLGs are nanoscale, hollow, biodegradable spheres, each one capable of accommodating large quantities of chemically diverse molecules.

The spheres appear to accumulate in the leaky , or blood vessels, of tumors, releasing their cargo in a controlled, sustained fashion as the spherule walls and scaffolding break down in the .

For the recent experiments, the NLGs contained two components: an inhibitor drug that counters a particularly potent cancer defense called transforming growth factor-β (TGF-β), and interleukin-2 (IL-2), a protein that rallies immune systems to respond to localized threats.

"You can think of the tumor and its microenvironment as a castle and a moat," says Tarek Fahmy, the Yale University engineering professor and NSF CAREER grantee who led the research. "The 'castles' are cancerous tumors, which have evolved a highly intelligent structure--the tumor cells and vasculature. The 'moat' is the cancer's defense system, which includes TGF-β. Our strategy is to 'dry-up' that moat by neutralizing the TGF-β. We do that using the inhibitor that is released from the nanolipogels. The inhibitor effectively stops the tumor's ability to stunt an immune response."

At the same time, the researchers boost the immune response in the region surrounding the tumor by delivering IL-2--a cytokine, which is a protein that tells protective cells that there is a problem--in the same drug delivery vehicle. "The cytokine can be thought of as a way to get reinforcements to cross the dry moat into the castle and signal for more forces to come in," adds Fahmy. In this case, the reinforcements are T-cells, the body's anti-invader 'army.' By accomplishing both treatment goals at once, the body has a greater chance to defeat the cancer.

The current study targeted both primary melanomas and melanomas that have spread to the lung, demonstrating promising results with a cancer that is well-suited to immunotherapy and for which radiation, chemotherapy and surgery tend to prove unsuccessful, particularly when metastatic. The researchers did not evaluate primary lung cancers in this study.

"We chose melanoma because it is the 'poster child' solid tumor for immunotherapy," says co-author Stephen Wrzesinski, now a medical oncologist and scientist at St. Peter's Cancer Center in Albany, N.Y. "One problem with current metastatic melanoma immunotherapies is the difficulty managing autoimmune toxicities when the treatment agents are administered throughout the body. The novel nanolipogel delivery system we used to administer IL-2 and an immune modulator for blocking the cytokine TGF-β will hopefully bypass systemic toxicities while providing support to enable the body to fight off the tumor at the tumor bed itself."

Simply stated, to attack melanoma with some chance of success, both drugs need to be in place at the same location at the same time, and in a safe dosage. The NLGs appear to be able to accomplish the dual treatment with proper targeting and a sustained release that proved safer for the animals undergoing therapy.

Critical to the treatment's success is the ability to package two completely different kinds of molecules--large, water-soluble proteins like IL-2 and tiny, water-phobic molecules like the TGF-β inhibitor-into a single package.

While many NLGs are injected into a patient during treatment, each one is a sophisticated system composed of simple-to-manufacture, yet highly functional, parts. The outer shell of each NLG is made from an FDA-approved, biodegradable, synthetic lipid that the researchers selected because it is safe, degrades in a controlled manner, is sturdy enough to encapsulate a drug-scaffolding complex, and is easy to form into a spherical shell.

Each shell surrounds a matrix made from biocompatible, biodegradable polymers that the engineers had already impregnated with the tiny TGF-β inhibitor molecules. The researchers then soaked those near-complete spheres in a solution containing IL-2, which gets entrapped within the scaffolding, a process called remote loading.

The end result is a nanoscale drug delivery vehicle that appears to fit the narrow parameters necessary for successful treatment. Each NLG is small enough to travel through the bloodstream, yet large enough to get entrapped in leaky cancer .

The NLG lipid shells have the strength to carry drugs into the body, yet are degradable so that they can deliver their cargo. And most critically, the spherules are engineered to accommodate a wide range of drug shapes and sizes. Ultimately, such a system could prove powerful not only for melanoma, but for a range of cancers.

Explore further: The USP15 biological thermostat: A promising novel therapeutic target in cancer

More information: DOI: 10.1038/nmat3355

Related Stories

The USP15 biological thermostat: A promising novel therapeutic target in cancer

February 19, 2012
After years studying the molecular bases of glioblastoma - the most common brain tumor and one of the most aggressive of all cancers, the group led by Dr. Joan Seoane , Director of Translational Research at the Vall d'Hebron ...

Systemic tumor disappearance following local radiation treatment reported in metastatic melanoma patient

March 7, 2012
A rarely seen phenomenon in cancer patients — in which focused radiation to the site of one tumor is associated with the disappearance of metastatic tumors all over the body — has been reported in a patient with ...

Enhanced treatment of brain tumors

November 23, 2011
Glioblastoma is regarded as the most malignant form of brain tumor. In many cases, neurosurgeons are not able to remove such tumors completely because of the risk of destroying too much brain tissue in the process. Moreover, ...

A 'Pacman strategy' to boost the immune system to fight cancer

April 12, 2011
A molecule that lies dormant until it encounters a cancer cell, then suddenly activates and rouses the body's immune system to fight cancer cells directly, marks the latest step in scientists' efforts to tap the body's own ...

Recommended for you

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

These foods may up your odds for colon cancer

January 18, 2018
(HealthDay)—Chowing down on red meat, white bread and sugar-laden drinks might increase your long-term risk of colon cancer, a new study suggests.

The pill lowers ovarian cancer risk, even for smokers

January 18, 2018
(HealthDay)—It's known that use of the birth control pill is tied to lower odds for ovarian cancer, but new research shows the benefit extends to smokers or women who are obese.

Researchers develop swallowable test to detect pre-cancerous Barrett's esophagus

January 17, 2018
Investigators at Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center have developed a simple, swallowable test for early detection of Barrett's esophagus that offers promise ...

Scientists zoom in to watch DNA code being read

January 17, 2018
Scientists have unveiled incredible images of how the DNA code is read and interpreted—revealing new detail about one of the fundamental processes of life.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.