Researchers look at the spread of dysentery from Europe to industrializing countries

August 5, 2012

Researchers have found that a bacterium that emerged centuries ago in Europe has now been spreading globally into countries undergoing rapid development and industrialization. Unlike other diarrheal diseases, this one is unlikely to be resolved by providing access to clean water. As developing countries become more industrialized the numbers of infections with dysentery-causing Shigella flexneri are known to decline, associated with improved health, lifestyle and perhaps most importantly access to clean water, but the incidence of another form of the dysentery-causing bacterium, Shigella sonnei, actually increases.

The team pinpointed that S. sonnei was first established in Europe just a few centuries ago, but in the last few decades has spread to the rest of the world. They also found that a key factor in the spread of this pathogen was a rise in multidrug resistance - the ability to survive exposure to a wide array of antibiotics. Because S. sonnei is easily transmitted and has high levels of , the researchers suggest that drug treatment and better alone will not be sufficient for controlling the disease. will be crucial.

is a disease primarily associated with and more than one million people, mostly young children, are estimated to die from dysentery caused by Shigella each year. Whilst most people have heard about dysentery, few know about the bacteria that causes it, Shigella. This is because it is relatively understudied and little is known about their or its origins. Traditionally, S. flexneri has been the most common form of Shigella to cause dysentery in developing countries with S. sonnei more prevalent in . Yet, this is beginning to change with S. sonnei becoming increasingly common as developing countries rapidly industrialize.

"Although S. sonnei is a relatively new species of bacterium, during its spread it has diversified into an array of different distinguishable clones or strains found right across the world," says Dr Kathryn Holt, first author from the University of Melbourne. "This is hard to see using traditional methods, but by sequencing the genomes of over 100 different forms of the bacteria, we were able to get a glimpse into its past and really start to understand how it is evolving and moving around the world."

"We compared the S. sonnei family tree and geographical locations of the different strains to determine when and where this bacterium first emerged and why it has become such a problem in industrialized countries with increasing access to clean water. Traditionally we associate dysentery with contaminated water and lack of ."

To investigate why the bacterium was spreading so effectively, the team looked at the S. sonnei's genetic evolution and found that only a few types of genes were selectively evolving over time, particularly those involved with drug resistance. This suggests that a major driver in the spread of this bacterium was its apparent ability to become resistant to drug treatment.

"Since S. sonnei originated, we found there have been three, independent, yet closely related lineages that have spread. The two most recent lineages have been continually evolving to become increasingly resistant to antimicrobials," says Dr Stephen Baker, a senior author from the Oxford University Clinical Research Unit in Vietnam. "Our data is consistent with antibiotic resistance as being a main driver of the spread and persistence of S.sonnei around the world, stressing that are not a long-term solution for the elimination of this global health problem."

Despite the fact S. sonnei and S. flexneri are closely related they have very different surface antigens or coats that interact with the human immune system. S. sonnei has only one type of outer coat, while S. flexneri has many, all of which look very different from that of S. sonnei. It has been speculated for some time that S. sonnei acquired its outer coat from another bacterium that is commonly found in contaminated water, Plesiomonas shigelloides.

Both S. sonnei and P. shigelloides have an identical outer coat. It is believed that when a person is exposed to contaminated water containing P. shigelloides, there is an immune cross reaction and the body builds a natural immunity against S. sonnei. This theory may explain why the incidence of S. sonnei increases following economic development and improvements to water quality, and is consistent with the patterns of global spread described in the current report.

"One of the Millennium Development Goals is to improve drinking water and reduce water borne diseases, an undeniably important aim," says Professor Nicholas Thomson, lead author from the Wellcome Trust Sanger Institute. "This may have the unforeseen result of increasing the incidence of S. sonnei dysentery in transitional countries.

"Our research emphasises the importance of a vaccine against Shigella. The combination of increased incidence and antibiotic resistance of S. sonnei, means that a vaccine will be increasingly important for the long-term control and prevention of dysentery."

Explore further: Roads pave the way for the spread of superbugs

More information: 'Out of Europe: The recent global dissemination of Shigella sonnei' Nature Genetics, August 5 2012. DOI: 10.1038/ng.2369

Related Stories

Roads pave the way for the spread of superbugs

September 29, 2011
Antibiotic resistant E. coli was much more prevalent in villages situated along roads than in rural villages located away from roads, which suggests that roads play a major role in the spread or containment of antibiotic ...

Scientists find new genetic path to deadly diarrheal disease

June 11, 2012
Scientists have found new genetic information that shows how harmful bacteria cause the acute diarrheal disease shigellosis, which kills more than a million people worldwide each year.

Recommended for you

New approach to studying chromosomes' centers may reveal link to Down syndrome and more

November 20, 2017
Some scientists call it the "final frontier" of our DNA—even though it lies at the center of every X-shaped chromosome in nearly every one of our cells.

Genome editing enhances T-cells for cancer immunotherapy

November 20, 2017
Researchers at Cardiff University have found a way to boost the cancer-destroying ability of the immune system's T-cells, offering new hope in the fight against a wide range of cancers.

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.