Gene discovery could improve treatment for acute myeloid leukemia

August 13, 2012

Scientists at Albert Einstein College of Medicine of Yeshiva University have made a discovery involving mice and humans that could mean that people with acute myeloid leukemia (AML), a rare and usually fatal cancer, are a step closer to new treatment options. Their study results were published online today in Cancer Cell.

"We have discovered that a gene called HLX is expressed at abnormally high levels in leukemia stem cells in a mouse model of AML," said Ulrich Steidl, M.D., Ph.D., assistant professor of cell biology and of medicine at Einstein and senior author of the paper. (Gene expression is the process by which a gene synthesizes the molecule that it codes for; an "over-expressed" gene makes its product in abnormally high amounts.)

According to the , AML will be diagnosed in one of every 254 people during their lifetime. Most die within a few years of diagnosis. For the last several decades there has been little improvement in the survival rate for AML patients.

Dr. Steidl and his colleagues found that over-expression of the HLX gene in mice caused blood-forming stem cells to become dysfunctional and develop into abnormal progenitors (biological ancestors) of that failed to differentiate into normal blood cells. Instead, those early, abnormal formed duplicates of themselves.

The researchers then analyzed HLX expression data collected from 354 AML patients and found that 87 percent of them were over-expressing HLX compared with HLX expression in healthy individuals. And among patients expressing HLX at high levels in an even larger cohort of 601 patients: the greater their degree of HLX expression, the worse their survival chances.

Importantly, when Dr. Steidl's team used a to "knock down" HLX expression in AML cells taken from a mouse model of AML and from , proliferation of was greatly suppressed in both cases. And when the researchers knocked down HLX expression in mouse AML cells and human AML cells and then transplanted both types of cancer cells into healthy mice, those mice lived significantly longer compared with mice that received unaltered AML cells.

These findings suggest that targeting elevated HLX expression may be a promising novel strategy for treating AML.

"HLX is clearly a key factor in causing the over-production of white cells that occurs in AML," said Dr. Steidl. "Our research is still in its early stages, but we're looking towards developing drugs…so we can improve treatment for AML and possibly other types of cancer." Einstein has filed a patent application related to this research. The HLX technology is available for licensing.

Explore further: Two-faced leukemia?

More information: "H2.0-like homeobox (HLX) regulates early hematopoiesis and promotes acute myeloid leukemia," Cancer Cell.

Related Stories

Two-faced leukemia?

December 12, 2011
One kind of leukemia sometimes masquerades as another, according to a study published online this week in the Journal of Experimental Medicine.

Study pinpoints and plugs mechanism of AML cancer cell escape

January 18, 2012
A study published this week in the journal Leukemia identifies a mechanism that acute myeloid leukemia (AML) cells use to evade chemotherapy – and details how to close this escape route.

Cell death researchers identify new Achilles heel in acute myeloid leukemia

January 17, 2012
Melbourne researchers have discovered that acute myeloid leukaemia (AML), an aggressive blood cancer with poor prognosis, may be susceptible to medications that target a protein called Mcl-1.

A microRNA prognostic marker identified in acute leukemia

May 14, 2012
A study has identified microRNA-3151 as a new independent prognostic marker in certain patients with acute leukemia. The study involves patients with acute myeloid leukemia and normal-looking chromosomes (CN-AML).

Gene mutation signals a high risk of recurrence in some older acute-leukemia patients

December 12, 2011
Older people with acute myeloid leukemia and normal looking chromosomes in their cancer cells have a higher risk of recurrence if they have mutations in a gene called ASXL1, according to a new study by researchers at the ...

Inhibitors of shuttle molecule show promise in acute leukemia

June 19, 2012
A novel family of experimental agents that blocks a molecule from shuttling proteins out of the cell nucleus might offer a new treatment for people with acute leukemia, according to a study by researchers at the Ohio State ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.