Gene discovery could improve treatment for acute myeloid leukemia

August 13, 2012

Scientists at Albert Einstein College of Medicine of Yeshiva University have made a discovery involving mice and humans that could mean that people with acute myeloid leukemia (AML), a rare and usually fatal cancer, are a step closer to new treatment options. Their study results were published online today in Cancer Cell.

"We have discovered that a gene called HLX is expressed at abnormally high levels in leukemia stem cells in a mouse model of AML," said Ulrich Steidl, M.D., Ph.D., assistant professor of cell biology and of medicine at Einstein and senior author of the paper. (Gene expression is the process by which a gene synthesizes the molecule that it codes for; an "over-expressed" gene makes its product in abnormally high amounts.)

According to the , AML will be diagnosed in one of every 254 people during their lifetime. Most die within a few years of diagnosis. For the last several decades there has been little improvement in the survival rate for AML patients.

Dr. Steidl and his colleagues found that over-expression of the HLX gene in mice caused blood-forming stem cells to become dysfunctional and develop into abnormal progenitors (biological ancestors) of that failed to differentiate into normal blood cells. Instead, those early, abnormal formed duplicates of themselves.

The researchers then analyzed HLX expression data collected from 354 AML patients and found that 87 percent of them were over-expressing HLX compared with HLX expression in healthy individuals. And among patients expressing HLX at high levels in an even larger cohort of 601 patients: the greater their degree of HLX expression, the worse their survival chances.

Importantly, when Dr. Steidl's team used a to "knock down" HLX expression in AML cells taken from a mouse model of AML and from , proliferation of was greatly suppressed in both cases. And when the researchers knocked down HLX expression in mouse AML cells and human AML cells and then transplanted both types of cancer cells into healthy mice, those mice lived significantly longer compared with mice that received unaltered AML cells.

These findings suggest that targeting elevated HLX expression may be a promising novel strategy for treating AML.

"HLX is clearly a key factor in causing the over-production of white cells that occurs in AML," said Dr. Steidl. "Our research is still in its early stages, but we're looking towards developing drugs…so we can improve treatment for AML and possibly other types of cancer." Einstein has filed a patent application related to this research. The HLX technology is available for licensing.

Explore further: Two-faced leukemia?

More information: "H2.0-like homeobox (HLX) regulates early hematopoiesis and promotes acute myeloid leukemia," Cancer Cell.

Related Stories

Two-faced leukemia?

December 12, 2011
One kind of leukemia sometimes masquerades as another, according to a study published online this week in the Journal of Experimental Medicine.

Study pinpoints and plugs mechanism of AML cancer cell escape

January 18, 2012
A study published this week in the journal Leukemia identifies a mechanism that acute myeloid leukemia (AML) cells use to evade chemotherapy – and details how to close this escape route.

Cell death researchers identify new Achilles heel in acute myeloid leukemia

January 17, 2012
Melbourne researchers have discovered that acute myeloid leukaemia (AML), an aggressive blood cancer with poor prognosis, may be susceptible to medications that target a protein called Mcl-1.

A microRNA prognostic marker identified in acute leukemia

May 14, 2012
A study has identified microRNA-3151 as a new independent prognostic marker in certain patients with acute leukemia. The study involves patients with acute myeloid leukemia and normal-looking chromosomes (CN-AML).

Gene mutation signals a high risk of recurrence in some older acute-leukemia patients

December 12, 2011
Older people with acute myeloid leukemia and normal looking chromosomes in their cancer cells have a higher risk of recurrence if they have mutations in a gene called ASXL1, according to a new study by researchers at the ...

Inhibitors of shuttle molecule show promise in acute leukemia

June 19, 2012
A novel family of experimental agents that blocks a molecule from shuttling proteins out of the cell nucleus might offer a new treatment for people with acute leukemia, according to a study by researchers at the Ohio State ...

Recommended for you

Poliovirus therapy induces immune responses against cancer

September 20, 2017
An investigational therapy using modified poliovirus to attack cancer tumors appears to unleash the body's own capacity to fight malignancies by activating an inflammation process that counter's the ability of cancer cells ...

Scientists restore tumor-fighting structure to mutated breast cancer proteins

September 20, 2017
Scientists at the Virginia Tech Carilion Research Institute have successfully determined the full architecture of the breast cancer susceptibility protein (BRCA1) for the first time. This three-dimensional information provides ...

Brain cancer growth halted by absence of protein, study finds

September 20, 2017
The growth of certain aggressive brain tumors can be halted by cutting off their access to a signaling molecule produced by the brain's nerve cells, according to a new study by researchers at the Stanford University School ...

New clinical trial explores combining immunotherapy and radiation for sarcoma patients

September 20, 2017
University of Maryland School of Medicine researchers are investigating a new approach to treat high-risk soft-tissue sarcomas by combining two immunotherapy drugs with radiation therapy to stimulate the immune system to ...

Researchers identify new target, develop new drug for cancer therapies

September 20, 2017
Opening up a new pathway to fight cancer, researchers at the University of Pennsylvania have found a way to target an enzyme that is crucial to tumor growth while also blocking the mechanism that has made past attempts to ...

Targeted antibiotic use may help cure chronic myeloid leukaemia

September 19, 2017
The antibiotic tigecycline, when used in combination with current treatment, may hold the key to eradicating chronic myeloid leukaemia (CML) cells, according to new research.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.