Heat-shock factor reveals its unique role in supporting highly malignant cancers

August 2, 2012

Whitehead Institute researchers have found that increased expression of a specific set of genes is strongly associated with metastasis and death in patients with breast, colon, and lung cancers. Not only could this finding help scientists identify a gene profile predictive of patient outcomes and response to treatment, it could also guide the development of therapeutics to target multiple cancer types.

The genes identified are activated by a transcription factor called heat-shock (HSF1) as part of a transcriptional program distinct from HSF1's well-known role in mediating the response of normal cells to elevated temperature.

In normal cells, a variety of , including heat, , and toxins, activate HSF1 leading to increased expression of so-called heat-shock or chaperone proteins that work to maintain protein homeostasis in stressed cells. Scientists have known for some time that many have higher levels of chaperones and that elevation of these proteins is important for survival and proliferation of tumor cells.

Now, however, researchers in the lab of Whitehead Member Susan Lindquist report that HSF1 supports cancers not only by increasing chaperones, but by unexpectedly regulating a broad range of that are important for the malignant behavior of . This activity allows for the development of the most aggressive forms of three of the most prevalent cancers—breast, lung, and colon. The findings, published this week in the journal Cell, build on earlier research from the Lindquist lab showing that elevated levels of HSF1 are associated with poorer prognosis in some forms of breast cancer.

"This work shows that HSF1 is fundamentally important across a broad range of human cancers, cancers of various types from all over the body turn on this response," says Sandro Santagata, a postdoctoral researcher in the Lindquist lab. "That's very interesting. It suggests how important HSF1 must be for helping tumors become their very worst."

In addition to confirming that this gene activation program differs from that associated with heat shock, the researchers found that in many tumors, it becomes active in virtually all of the tumor's cells.

"This demonstrates it isn't simply regions of microenvironmental stress within a tumor that drive HSF1 activity, but rather that HSF1 activation is wired into the core circuitry of cancer cells, orchestrating a distinct gene regulatory program that enables particularly aggressive phenotypes," says Marc Mendillo, a postdoctoral researcher in the Lindquist lab. "This suggests HSF1 itself could be a great therapeutic target."

Luke Whitesell, an oncologist and senior research scientist in the Lindquist lab, concurs that HSF1 is a conceptually appealing target for therapeutic intervention, noting that suppressing HSF1 for short periods of time should have minimal consequences on normal cells. However, he adds, actually developing such a drug could be problematic.

"Coming up with a drug that disrupts HSF1's interaction with DNA, which is how it activates all of these genes, that is going to be really tough," says Whitesell. "No one has come up with a clinically useful drug that directly interrupts a transcription factor's interaction with DNA yet. But there are ways to disrupt a transcription factor's function indirectly, as opposed to directly targeting the protein itself. What we have now from this research is a new view of the landscape and the possibilities for drug discovery and development that are out there."

Explore further: High levels of master heat shock protein linked to poor prognosis in breast cancer patients

More information: "HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers" Cell, August 3, 2012.

Related Stories

High levels of master heat shock protein linked to poor prognosis in breast cancer patients

October 31, 2011
Whitehead Institute scientists report that patients whose estrogen receptor (ER)-positive breast cancers have high levels of the ancient cellular survival factor heat shock factor 1 (HSF1) experience poor outcomes -- including ...

Transcription factor is potential target for liver cancer treatment

July 6, 2011
Altering the body's metabolism could be an effective treatment for deadly liver cancer, researchers report.

Breast cancer clinical trial tests combo of heat shock protein inhibitor and hormonal therapy

May 22, 2012
Pushed to the brink of survival, the hyper-driven cells of a cancerous tumor tap into an ancient system that has helped organisms cope with internal stresses and environmental challenges since life began. As an integral part ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.