Heat-shock factor reveals its unique role in supporting highly malignant cancers

August 2, 2012, Whitehead Institute for Biomedical Research

Whitehead Institute researchers have found that increased expression of a specific set of genes is strongly associated with metastasis and death in patients with breast, colon, and lung cancers. Not only could this finding help scientists identify a gene profile predictive of patient outcomes and response to treatment, it could also guide the development of therapeutics to target multiple cancer types.

The genes identified are activated by a transcription factor called heat-shock (HSF1) as part of a transcriptional program distinct from HSF1's well-known role in mediating the response of normal cells to elevated temperature.

In normal cells, a variety of , including heat, , and toxins, activate HSF1 leading to increased expression of so-called heat-shock or chaperone proteins that work to maintain protein homeostasis in stressed cells. Scientists have known for some time that many have higher levels of chaperones and that elevation of these proteins is important for survival and proliferation of tumor cells.

Now, however, researchers in the lab of Whitehead Member Susan Lindquist report that HSF1 supports cancers not only by increasing chaperones, but by unexpectedly regulating a broad range of that are important for the malignant behavior of . This activity allows for the development of the most aggressive forms of three of the most prevalent cancers—breast, lung, and colon. The findings, published this week in the journal Cell, build on earlier research from the Lindquist lab showing that elevated levels of HSF1 are associated with poorer prognosis in some forms of breast cancer.

"This work shows that HSF1 is fundamentally important across a broad range of human cancers, cancers of various types from all over the body turn on this response," says Sandro Santagata, a postdoctoral researcher in the Lindquist lab. "That's very interesting. It suggests how important HSF1 must be for helping tumors become their very worst."

In addition to confirming that this gene activation program differs from that associated with heat shock, the researchers found that in many tumors, it becomes active in virtually all of the tumor's cells.

"This demonstrates it isn't simply regions of microenvironmental stress within a tumor that drive HSF1 activity, but rather that HSF1 activation is wired into the core circuitry of cancer cells, orchestrating a distinct gene regulatory program that enables particularly aggressive phenotypes," says Marc Mendillo, a postdoctoral researcher in the Lindquist lab. "This suggests HSF1 itself could be a great therapeutic target."

Luke Whitesell, an oncologist and senior research scientist in the Lindquist lab, concurs that HSF1 is a conceptually appealing target for therapeutic intervention, noting that suppressing HSF1 for short periods of time should have minimal consequences on normal cells. However, he adds, actually developing such a drug could be problematic.

"Coming up with a drug that disrupts HSF1's interaction with DNA, which is how it activates all of these genes, that is going to be really tough," says Whitesell. "No one has come up with a clinically useful drug that directly interrupts a transcription factor's interaction with DNA yet. But there are ways to disrupt a transcription factor's function indirectly, as opposed to directly targeting the protein itself. What we have now from this research is a new view of the landscape and the possibilities for drug discovery and development that are out there."

Explore further: High levels of master heat shock protein linked to poor prognosis in breast cancer patients

More information: "HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers" Cell, August 3, 2012.

Related Stories

High levels of master heat shock protein linked to poor prognosis in breast cancer patients

October 31, 2011
Whitehead Institute scientists report that patients whose estrogen receptor (ER)-positive breast cancers have high levels of the ancient cellular survival factor heat shock factor 1 (HSF1) experience poor outcomes -- including ...

Transcription factor is potential target for liver cancer treatment

July 6, 2011
Altering the body's metabolism could be an effective treatment for deadly liver cancer, researchers report.

Breast cancer clinical trial tests combo of heat shock protein inhibitor and hormonal therapy

May 22, 2012
Pushed to the brink of survival, the hyper-driven cells of a cancerous tumor tap into an ancient system that has helped organisms cope with internal stresses and environmental challenges since life began. As an integral part ...

Recommended for you

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

These foods may up your odds for colon cancer

January 18, 2018
(HealthDay)—Chowing down on red meat, white bread and sugar-laden drinks might increase your long-term risk of colon cancer, a new study suggests.

The pill lowers ovarian cancer risk, even for smokers

January 18, 2018
(HealthDay)—It's known that use of the birth control pill is tied to lower odds for ovarian cancer, but new research shows the benefit extends to smokers or women who are obese.

Researchers develop swallowable test to detect pre-cancerous Barrett's esophagus

January 17, 2018
Investigators at Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center have developed a simple, swallowable test for early detection of Barrett's esophagus that offers promise ...

Scientists zoom in to watch DNA code being read

January 17, 2018
Scientists have unveiled incredible images of how the DNA code is read and interpreted—revealing new detail about one of the fundamental processes of life.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.