Knockout finding reveals large number of genes that affect our bones

August 8, 2012

(Medical Xpress) -- Australian and UK scientists have shown that a large percentage of genes are likely to affect bone strength, potentially around 2,000 of the 21,000 genes in our bodies.

Identifying that lead to is an important first step in helping to treat this serious condition, which affects over 2 million .

Out of 100 ‘knockout mice’, the first generated on a ‘pipeline’ set up by the UK’s Wellcome Trust Sanger Institute (as part of a global effort to knockout every gene in the genome one by one) the scientists identified 9 genes that appear to weaken or strengthen bone.

Professor Peter Croucher from Sydney’s Garvan Institute of Medical Research, in collaboration with Dr Duncan Bassett and Professor Graham Williams from Imperial College London and colleagues at the Sanger Institute, used micro-CT and digital x-ray microradiography in combination with statistics and load bearing experiments to measure whether or not each of the first 100 genes impacted upon bone. Their results are published in PLoS Genetics, now online.

“We wanted to see what screening the first 100 knockout mice off the pipeline would tell us about the impact of these genes on bone, and whether or not our approach was an effective one,” said Professor Peter Croucher.

“The approach was successful in that we identified 9 genes that had not previously been described – each of which appeared to be important in regulating our skeleton. This suggests that roughly 8-10% of all genes may be involved in some way.”

“We believe a systematic screening of in this way will give us the scale of data we need to define the structural and functional variations in genes that determine .”

“CT scans and microradiography give us the structural information we need, and fracturing the bones afterwards tells us whether or not there is an increase or a decrease in the propensity to fracture. That’s the functional endpoint.”

“This has allowed us to describe four functional classifications of bone. Normal bone is strong and flexible, whereas abnormal bone can be strong but brittle, or weak and brittle, or weak but flexible.”

“At the moment, we’re trying to understand the potential role of the 9 genes we’ve just identified. Our results suggest that if you were to block some of them, it would result in higher mass and stronger bones. We’ll be making antibodies to those genes to test our results.”

“We believe that many genes will be individual players in complex pathways – so they will act as pointers to those pathways, and obviously some pathways will be much more important than others. It’s our aim to pinpoint the critical pathways.”

The study participants will be applying to The Wellcome Trust to fund the screening of the next 800-1000 genes off the Sanger Institute pipeline, over a period of 5 years.

Explore further: 100 gene deletions in mice identifies 9 new genes that determine bone strength

Related Stories

100 gene deletions in mice identifies 9 new genes that determine bone strength

August 2, 2012
A genetic screening approach to studying bone disease has found nine new genes associated with bone health and suggests a new way to discover genes that may be implicated in human skeletal diseases. A collaborative study ...

There is no such thing as identical where twins are concerned

October 14, 2011
Identical twins have identical genomes, but that is where it stops. There are subtle differences in their personalities, how they look, how they act and in their susceptibility to disease. How can this be?

Inactive genes surprisingly common in humans

February 16, 2012
(Medical Xpress) -- Every person carries on average 100 variants that disable genes - yet very few suffer ill effects, an international team of researchers led by Yale University and Wellcome Trust Sanger Institute report ...

Could a drug reverse Type 2 diabetes?

September 23, 2011
Australian researchers have isolated a ‘master gene’ that controls Type 2 diabetes and say drugs that prevent or reverse the condition by switching off the gene may be as little as five years away

Recommended for you

Genome analysis with near-complete privacy possible, say researchers

August 17, 2017
It is now possible to scour complete human genomes for the presence of disease-associated genes without revealing any genetic information not directly associated with the inquiry, say Stanford University researchers.

Science Says: DNA test results may not change health habits

August 17, 2017
If you learned your DNA made you more susceptible to getting a disease, wouldn't you work to stay healthy?

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Phenotype varies for presumed pathogenic variants in KCNB1

August 16, 2017
(HealthDay)—De novo KCNB1 missense and loss-of-function variants are associated with neurodevelopmental disorders, with or without seizures, according to a study published online Aug. 14 in JAMA Neurology.

Active non-coding DNA might help pinpoint genetic risk for psychiatric disorders

August 16, 2017
Northwestern Medicine scientists have demonstrated a new method of analyzing non-coding regions of DNA in neurons, which may help to pinpoint which genetic variants are most important to the development of schizophrenia and ...

Evolved masculine and feminine behaviors can be inherited from social environment

August 15, 2017
The different ways men and women behave, passed down from generation to generation, can be inherited from our social environment - not just from genes, experts have suggested.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.