Mathematical modelling to tackle metabolic diseases

August 30, 2012
Mathematical modelling to tackle metabolic diseases
© Thinkstock

Predictive mathematical models of signalling pathways are powerful biological tools that could be used for drug development. Using a similar approach, European scientists developed a computational model for answering research questions regarding the AMP-activated protein kinase pathway.

AMP-activated protein kinase has a master regulatory role in monitoring the cellular energy status. The signalling pathway involving AMP-activated protein kinase controls energy production and consumption, thereby affecting most intracellular biological processes.

The EU ' of the AMP-activated protein kinase pathway' (Ampkin) project was designed to contribute to our understanding of how the AMP-activated protein kinase pathways operate. More specifically, project scientists planned to generate predictive kinetic mathematical descriptions of pathway activation/deactivation in order to identify potential to treat human metabolic diseases.

Using existing data of protein, mRNA expression and enabled scientists to capture the pathway's dynamics and design kinetics models. Comparison of the yeast and mammalian pathways indicated that AMP-activated protein kinase has similar targets and physiological roles in both systems.

Additionally, assay tools were generated for the majority of the steps of the AMP cascade, thereby maximising the use of real data in the mathematical model. Combined with quantitative dynamic datasets generated following activation and deactivation of the AMP-activated protein kinase pathway, it was possible to build mathematical models for the yeast homologue, Snf1.

Importantly, the Ampkin model was designed to assess system perturbations and potentially be used for drug screening. By integrating modelling with experimentation, project partners managed to continuously improve the AMP-activated protein kinase model. This allowed them to address research-related questions and hopefully provide answers for such as obesity and type II diabetes.

Explore further: AMPK amplifies Huntington's disease

Related Stories

AMPK amplifies Huntington's disease

July 18, 2011
A new study describes how hyperactivation of AMP-activated protein kinase (AMPK) promotes neurodegeneration in Huntington's disease (HD). The article appears online on July 18, 2011, in The Journal of Cell Biology.

Real-time monitoring of cellular signalling events

May 2, 2012
(Medical Xpress) -- Phosphorylation is one of the most important and ubiquitous cell regulatory events. EU-funded researchers assessed the dynamic events of intracellular phosphorylation in two model systems with important ...

Hormone in fruit flies sheds light on diabetes cure, weight-loss drug for humans

August 9, 2012
Manipulating a group of hormone-producing cells in the brain can control blood sugar levels in the body – a discovery that has dramatic potential for research into weight-loss drugs and diabetes treatment.

Exploring the relation between stem cells and tumor growth

July 16, 2012
An EU research project has shed light on the tumor-growth role of a key-signalling pathway in mammary gland stem cells.

Recommended for you

Using barcodes to trace cell development

August 16, 2017
How do the multiple different cell types in the blood develop? Scientists have been pursuing this question for a long time. According to the classical model, different developmental lines branch out like in a tree. The tree ...

After a half-century of attempts, psilocybin has finally been synthesized in the lab

August 16, 2017
A team of researchers at Friedrich Schiller University Jena has figured how out to make psilocybin, the chemical responsible for creating hallucinations in people who consume the mushrooms that produce it naturally. In their ...

The unexpected role of a well-known gene in creating blood

August 16, 2017
One of the first organ systems to form and function in the embryo is the cardiovascular system: in fact, this developmental process starts so early that scientists still have many unresolved questions on the origin of the ...

Researchers unlock clues to how cells move through the body

August 16, 2017
During its 120-day cycle the circulatory system transports red blood cells and nutrients throughout the human body. This system helps keep the body in balance and fight against infections and diseases by filtering old or ...

Eating habits affect skin's protection against sun

August 15, 2017
Sunbathers may want to avoid midnight snacks before catching some rays.

Therapeutic fusion protein could mitigate blood vessel damage from cardiovascular disease

August 15, 2017
Scientists from Boston Children's Hospital Vascular Biology Program have revealed an engineered fusion protein that could recover blood vessel health following the onset of hypertension, atherosclerosis, stroke, heart attack, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.