Mathematical modelling to tackle metabolic diseases

August 30, 2012
Mathematical modelling to tackle metabolic diseases
© Thinkstock

Predictive mathematical models of signalling pathways are powerful biological tools that could be used for drug development. Using a similar approach, European scientists developed a computational model for answering research questions regarding the AMP-activated protein kinase pathway.

AMP-activated protein kinase has a master regulatory role in monitoring the cellular energy status. The signalling pathway involving AMP-activated protein kinase controls energy production and consumption, thereby affecting most intracellular biological processes.

The EU ' of the AMP-activated protein kinase pathway' (Ampkin) project was designed to contribute to our understanding of how the AMP-activated protein kinase pathways operate. More specifically, project scientists planned to generate predictive kinetic mathematical descriptions of pathway activation/deactivation in order to identify potential to treat human metabolic diseases.

Using existing data of protein, mRNA expression and enabled scientists to capture the pathway's dynamics and design kinetics models. Comparison of the yeast and mammalian pathways indicated that AMP-activated protein kinase has similar targets and physiological roles in both systems.

Additionally, assay tools were generated for the majority of the steps of the AMP cascade, thereby maximising the use of real data in the mathematical model. Combined with quantitative dynamic datasets generated following activation and deactivation of the AMP-activated protein kinase pathway, it was possible to build mathematical models for the yeast homologue, Snf1.

Importantly, the Ampkin model was designed to assess system perturbations and potentially be used for drug screening. By integrating modelling with experimentation, project partners managed to continuously improve the AMP-activated protein kinase model. This allowed them to address research-related questions and hopefully provide answers for such as obesity and type II diabetes.

Explore further: AMPK amplifies Huntington's disease

Related Stories

AMPK amplifies Huntington's disease

July 18, 2011
A new study describes how hyperactivation of AMP-activated protein kinase (AMPK) promotes neurodegeneration in Huntington's disease (HD). The article appears online on July 18, 2011, in The Journal of Cell Biology.

Real-time monitoring of cellular signalling events

May 2, 2012
(Medical Xpress) -- Phosphorylation is one of the most important and ubiquitous cell regulatory events. EU-funded researchers assessed the dynamic events of intracellular phosphorylation in two model systems with important ...

Hormone in fruit flies sheds light on diabetes cure, weight-loss drug for humans

August 9, 2012
Manipulating a group of hormone-producing cells in the brain can control blood sugar levels in the body – a discovery that has dramatic potential for research into weight-loss drugs and diabetes treatment.

Exploring the relation between stem cells and tumor growth

July 16, 2012
An EU research project has shed light on the tumor-growth role of a key-signalling pathway in mammary gland stem cells.

Recommended for you

Researchers find infectious prions in Creutzfeldt-Jakob disease patient skin

November 22, 2017
Creutzfeldt-Jakob disease (CJD)—the human equivalent of mad cow disease—is caused by rogue, misfolded protein aggregates termed prions, which are infectious and cause fatal damages in the patient's brain. CJD patients ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.