Researchers find proteins may point way to new prostate cancer drug targets

August 6, 2012
Vanderbilt's Sarki Abdulkadir, M.D., Ph.D., center, Sydika McKissic, Ph.D., left, Philip Anderson, Ph.D., and colleagues are studying the role of two proteins in regulating the same set of genes in prostate cancer. Credit: Photo by John Russell

Two proteins that act in opposing directions – one that promotes cancer and one that suppresses cancer — regulate the same set of genes in prostate cancer, Vanderbilt-Ingram Cancer Center researchers have found.

The findings, reported recently in the Journal of Clinical Investigation, point toward potential drug targets and prognostic markers for prostate cancer.

"We are trying to understand the molecular genetics of prostate cancer: what are the genes that are altered in human prostate cancer, and very importantly, how do they lead to cancer when they are changed?" said Sarki Abdulkadir, M.D., Ph.D., associate professor of Pathology, Microbiology and Immunology and of Cancer Biology.

Abdulkadir's lab uses mouse models to probe the molecular pathways involved in prostate cancer.

Two separate projects in the lab unexpectedly came together for this study — one led by postdoctoral fellow Philip Anderson, Ph.D., and the other spearheaded by (then) graduate student Sydika McKissic, Ph.D.

Anderson was using genomic approaches to understand how loss of a tumor suppressor protein, called NKX3.1, promotes prostate cancer. NKX3.1 is a transcription factor, meaning that it binds to and regulates the expression of other genes, turning them "on" or "off."

"It is one of the genes most commonly deleted in human prostate cancer…and is lost very early," explained Abdulkadir.

Anderson isolated the NKX3.1 protein and identified a set of 9,817 genes that bind to the protein. Of that set, he identified 282 genes that are regulated by the protein – i.e., their expression was altered by loss of NKX3.1.

"So we took those genes...and asked 'what is interesting about these genes?'" said Abdulkadir.

Using bioinformatics tools, the investigators found a quarter of the NKX3.1-regulated genes are also bound by a "famous" oncogene called Myc (which, like NKX3.1, is also a transcription factor).

It was previously known that, as human prostate cancer progresses, NKX3.1 levels decrease and Myc levels increase. The research team's findings showed that these two proteins with opposing functions regulated a similar set of genes.

"What we showed in this paper is that actually in many instances, NKX binds and represses these genes while Myc binds and activates them," Abdulkadir said. "The way we think about it is this: Myc is the 'accelerator' and NKX3.1 is the 'brake' (on cancer growth)."

Meanwhile, McKissic was working to develop a mouse model of prostate cancer. However, mice lacking NKX3.1 alone developed early stage prostate cancer, but the disease would not progress. Abdulkadir suspected that another genetic "hit" or mutation was necessary to progress fully to prostate cancer and suspected that Myc was a good candidate for that second "hit" based on how commonly the gene is altered in human prostate cancer.

So McKissic developed a mouse model in which NKX3.1 was deleted and Myc was overexpressed in the specific prostate cells where cancer arises.

She showed that mice with this combination of genetic alterations did progress to advanced cancer — and that the same target genes identified in Anderson's project were dysregulated in the mouse model.

To determine clinical relevance, the researchers then analyzed genetic and clinical data from patients with prostate cancer. They found that expression of these target genes was associated with tumor relapse – specifically, that suppression of a subset of the target genes may predict relapse.

In addition to potential prognostic indicators of relapse, these "cross-regulated" genes may present therapeutic targets to halt progression of .

Future studies on the roles of the individual target genes could help reveal "which of these genes are bigger players than others for things like therapeutics," Abdulkadir said.

Explore further: New research sheds light on gene destruction linked to aggressive prostate cancer

Related Stories

New research sheds light on gene destruction linked to aggressive prostate cancer

January 26, 2012
Researchers at Queen's University in Kingston, Canada have identified a possible cause for the loss of a tumour suppressor gene (known as PTEN) that can lead to the development of more aggressive forms of prostate cancer.

Scientists identify new mechanism of prostate cancer cell metabolism

March 22, 2012
Cancer cell metabolism may present a new target for therapy as scientists have uncovered a possible gene that leads to greater growth of prostate cancer cells.

Abnormal gene product associated with prostate cancer generated by unusual mechanism

June 19, 2012
Researchers have identified a potential new pathway in prostate cancer cells by which cancer-driving gene products can be generated, according to a study published in Cancer Discovery, a journal of the American Association ...

Vigorous exercise linked to gene activity in prostate

February 1, 2012
Scientists at the University of California, San Francisco (UCSF) have identified nearly 200 genes in the healthy prostate tissue of men with low-grade prostate cancer that may help explain how physical activity improves survival ...

Recommended for you

What does hair loss have to teach us about cancer metastasis?

December 15, 2017
Understanding how cancer cells are able to metastasize—migrate from the primary tumor to distant sites in the body—and developing therapies to inhibit this process are the focus of many laboratories around the country. ...

Cancer immunotherapy may work better in patients with specific genes

December 15, 2017
Cancer cells arise when DNA is mutated, and these cells should be recognized as "foreign" by the immune system. However, cancer cells have found ways to evade detection by the immune system.

Scientists pinpoint gene to blame for poorer survival rate in early-onset breast cancer patients

December 15, 2017
A new study led by scientists at the University of Southampton has found that inherited variation in a particular gene may be to blame for the lower survival rate of patients diagnosed with early-onset breast cancer.

Scientists unlock structure of mTOR, a key cancer cell signaling protein

December 14, 2017
Researchers in the Sloan Kettering Institute have solved the structure of an important signaling molecule in cancer cells. They used a new technology called cryo-EM to visualize the structure in three dimensions. The detailed ...

'Bet hedging' explains the efficacy of many combination cancer therapies

December 14, 2017
The efficacy of many FDA-approved cancer drug combinations is not due to synergistic interactions between drugs, but rather to a form of "bet hedging," according to a new study published by Harvard Medical School researchers ...

Liquid biopsy results differed substantially between two providers

December 14, 2017
Two Johns Hopkins prostate cancer researchers found significant disparities when they submitted identical patient samples to two different commercial liquid biopsy providers. Liquid biopsy is a new and noninvasive alternative ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.