Scientists discover one of the ways the influenza virus disarms host cells

August 23, 2012

(Medical Xpress)—When you are hit with the flu, you know it immediately—fever, chills, sore throat, aching muscles, fatigue. This is your body mounting an immune response to the invading virus. But less is known about what is happening on the molecular level.

Now Northwestern University scientists have discovered one of the ways the disarms our natural defense system. The virus decreases the production of key immune system-regulating proteins in that help fight the invader. The virus does this by turning on the microRNAs—little snippets of RNA—that regulate these proteins.

The researchers, led by Curt M. Horvath, are among the first to show the influenza virus can change the expression of microRNA to control immune responses in cells.

The findings reveal a new aspect of the interaction between the influenza virus and its host. Knowing how viruses disable the immune system to wreak havoc in the body will help researchers design therapeutics to preserve the immune response and keep people healthy. The knowledge also may be valuable for future diagnostics.

The study is published by the . The paper will appear in its final form in September.

"It's a battle of supremacy between virus and host," said Horvath, the senior author of the paper. "Our goal is to understand how the flu replicates in the host. Now we've discovered a new pathway in which the flu controls the immune response, by shutting down vital . With better understanding of this mechanism, one day we may be able to customize therapeutics to target individual ."

Horvath is the Soretta and Henry Shapiro Research Professor in and professor of in the Weinberg College of Arts and Sciences. He also is professor of microbiology-immunology and medicine at the Feinberg School of Medicine.

A microRNA has only 17 to 24 nucleotides, and its function is to dampen or shut down the production of proteins in the body. (Proteins are the workhorses of the cell.) There are hundreds of different types of microRNAs in animals.

It's been known for many years that when a virus such as influenza infects respiratory cells there is an immediate antiviral response at the cellular level—the first barrier for protecting the body from the virus. Most of the changes that occur are a result of antiviral gene expression.

About 10 years ago, scientists first learned about small RNA pathways called microRNAs, which regulate gene expression. This led Horvath to want to investigate the role of microRNAs in influenza virus infection and determine what they are contributing to the antiviral response. Exactly which genes might the microRNAs be targeting?

In their current study, Horvath and his team used human , infected them with the influenza A virus and looked to see which microRNAs were activated in response to the virus. They focused on six microRNAs that were found to increase in abundance during flu infection.

The researchers found the virus activated two microRNAs that turned on the genes IRAK1 and MAPK3. This resulted in a decrease in the amount of proteins that help turn on the immune response.

Essentially, the virus uses the cell mechanisms to its advantage, disarming parts of the natural antiviral system. The flu takes over the expression of microRNAs for its own purposes. The flu increases the expression of , which decreases the amount of protein and diminishes the immune response.

Having identified a specific set of microRNAs whose expression in host respiratory cells is changed by the influenza virus, Horvath next is interested at looking at the clinical outcomes. He is working with Pedro C. Avila, M.D., professor of medicine-allergy-immunology at the Feinberg School to see if the microRNAs are disregulated in patients with influenza.

Explore further: Genetic regulators hijacked by avian and swine flu viruses identified

Related Stories

Genetic regulators hijacked by avian and swine flu viruses identified

March 29, 2012
Researchers at the University of British Columbia have identified a number of tiny but powerful "genetic regulators" that are hijacked by avian and swine flu viruses during human infection.

Scientists describe new protein's role in immune response to pathogens

June 28, 2011
The human immune system is a double-edged sword.  While it is finely adapted to fighting potentially deadly viruses, such as the H1N1 influenza, the mechanisms it uses to fight pathogens can have negative effects such ...

Gene discovery helps explain how flu can cause severe infections

June 28, 2012
Scientists have discovered a new gene in the influenza virus that helps the virus control the body's response to infection.

Recommended for you

Researchers create skeletal muscle from stem cells

December 18, 2017
UCLA scientists have developed a new strategy to efficiently isolate, mature and transplant skeletal muscle cells created from human pluripotent stem cells, which can produce all cell types of the body. The findings are a ...

Fruit fly breakthrough may help human blindness research

December 18, 2017
For decades, scientists have known that blue light will make fruit flies go blind, but it wasn't clear why. Now, a Purdue University study has found how this light kills cells in the flies' eyes, and that could prove a useful ...

Tiny bilirubin-filled capsules could improve survival of transplanted pancreatic cells

December 18, 2017
By encapsulating bilirubin within tiny nanoparticles, researchers from North Carolina State University and the Ohio State University have improved the survival rates of pancreatic islet cells in vitro in a low-oxygen environment. ...

Tracking effects of a food preservative on the gut microbiome

December 18, 2017
Antimicrobial compounds added to preserve food during storage are believed to be benign and non-toxic to the consumer, but there is "a critical scientific gap in understanding the potential interactions" they may have with ...

Drug found that induces apoptosis in myofibroblasts reducing fibrosis in scleroderma

December 15, 2017
(Medical Xpress)—An international team of researchers has found that the drug navitoclax can induce apoptosis (self-destruction) in myofibroblasts in mice, reducing the spread of fibrosis in scleroderma. In their paper ...

How defeating THOR could bring a hammer down on cancer

December 14, 2017
It turns out Thor, the Norse god of thunder and the Marvel superhero, has special powers when it comes to cancer too.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

omicsjournals
not rated yet Aug 27, 2012
Thanks for sharing valuable information.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.