Therapeutic avenues for Parkinson's investigated at UH

August 23, 2012

Scientists at the University of Houston (UH) have discovered what may possibly be a key ingredient in the fight against Parkinson's disease.

Affecting more than 500,000 people in the U.S., Parkinson's disease is a degenerative disorder of the marked by a loss of certain in the brain, causing a lack of dopamine. These dopamine-producing neurons are in a section of the midbrain that regulates body control and movement. In a study recently published in the (PNAS), researchers from the UH Center for Nuclear Receptors and Cell Signaling (CNRCS) demonstrated that the liver X receptor beta (LXRbeta) may play a role in the prevention and treatment of this progressive neurodegenerative disease.

"LXRbeta performs an important function in the development of the central nervous system, and our work indicates that the presence of LXRbeta promotes the survival of dopaminergic neurons, which are the main source of dopamine in the central nervous system," said CNRCS director and professor Jan-Åke Gustafsson, whose lab discovered LXRbeta in 1995. "The receptor continues to show promise as a potential therapeutic target for this disease, as well as other neurological disorders."

To better understand the relationship between LXRbeta and Parkinson's disease, the team worked with a , called MPTP, a contaminant found in street drugs that caused Parkinson's in people who consumed these drugs. In lab settings, MPTP is used in murine models to simulate the disease and to study its pathology and possible treatments.

The researchers found that the absence of LXRbeta increased the harmful effects of MPTP on dopamine-producing neurons. Additionally, they found that using a drug that activates LXRbeta receptors prevented the destructive effects of MPTP and, therefore, may offer protection against the neurodegeneration of the midbrain.

"LXRbeta is not expressed in the dopamine-producing neurons, but instead in the microglia surrounding the neurons," Gustafsson said. "Microglia are the police of the brain, keeping things in order. In Parkinson's disease the microglia are overactive and begin to destroy the healthy neurons in the neighborhood of those neurons damaged by MPTP. LXRbeta calms down the microglia and prevents collateral damage. Thus, we have discovered a novel for treatment of Parkinson's disease."

Explore further: Reprogramming brain cells important first step for new Parkinson's therapy, study finds

More information: doi: 10.1073/pnas.1210833109

Related Stories

Reprogramming brain cells important first step for new Parkinson's therapy, study finds

December 13, 2011
(Medical Xpress) -- In efforts to find new treatments for Parkinson’s Disease (PD), researchers from the Perelman School of Medicine at the University of Pennsylvania have directly reprogrammed astrocytes, the most plentiful ...

Recommended for you

Investigating the most common genetic contributor to Parkinson's disease

October 19, 2017
LRRK2 gene mutations are the most common genetic cause of Parkinson's disease (PD), but the normal physiological role of this gene in the brain remains unclear. In a paper published in Neuron, Brigham and Women's Hospital ...

Scientists solve 3-D structure of key defense protein against Parkinson's disease

October 5, 2017
Scientists at the University of Dundee have identified the structure of a key enzyme that protects the brain against Parkinson's disease.

Novel protein interactions explain memory deficits in Parkinson's disease

September 26, 2017
A study published in the journal Nature Neuroscience describes the identification of a novel molecular pathway that can constitute a therapeutic target for cognitive defects in Parkinson's disease. The study showed that abnormal ...

Psychosis in Parkinson's dementia—new treatment provides hope

September 25, 2017
New research involving King's College London and the University of Exeter has highlighted the benefits of a promising new treatment which could relieve psychosis in thousands of people with dementia related to Parkinson's ...

Bicycling 'overloads' movement networks with Parkinson's

September 23, 2017
(HealthDay)—Bicycling suppresses abnormal beta synchrony in the Parkinsonian basal ganglia, according to a study published online Sept. 11 in the Annals of Neurology.

Researchers find new path to promising Parkinson's treatment

September 19, 2017
Three researchers at The University of Alabama are part of work that is leading to a new direction for drug discovery in the quest to treat Parkinson's disease.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.