Researchers may have found a weak link in the flu virus

August 27, 2012
The 5' and 3' splice sites (red arrows) are shown in a basic rendering of a segment of the RNA molecule (A), as well as in the pseudoknot (B) and hairpin (C) conformations

(Medical Xpress)—A team of researchers, led by scientists at the University of Rochester, has identified a location in a gene of the influenza A virus that could be used as a "switch" for disrupting replication of the virus. If a way can be found to manipulate the switch in an organism, the researchers believe it would have important implications for stopping the spread of influenza.

The work was conducted by Professor of Chemistry Douglas Turner and scientists Walter Moss, Lumbini Dela-Moss, and Salvatore Priore at the University of Rochester, and Ryszard Kierzek and Elzbieta Kierzek at the Polish Academy of Sciences in Poznan. Their findings were recently published in the journal .

The scientists singled out a () in their research because it allows the production of two proteins needed for viral propagation. Production of the second protein requires the mRNA to undergo the process of splicing, in which two remote sites of the long molecule join together, while the intervening segment is discarded.

"We look at one of the splicing sites as a potential switch," said Turner. "If we can inactivate the switch to prevent the two sites from coming together, we can stop the virus from spreading."

The scientists analyzed data from the sequencing of the influenza genome, which is available on a government database, in order to construct a 2-D rendering of the RNA molecule. By using a combination of computational and biochemical tools, they found that one of the splicing sites-referred to as 3'-exists in either an exposed hairpin loop or a difficult-to-access pseudoknot. The scientists concluded that there are two ways to prevent splicing of the . One possibility is to hide the splicing sites from each other, which could involve forcing the 3' site to exist in the pseudoknot conformation. The second option would entail inserting a molecule into the 3' site to render it incapable of splicing. Either option, Turner said, would prevent production of a necessary protein and propagation of the virus.

David Topham, co-director of the New York Influenza Center for Excellence, called the identification of a splicing switch an "unexpected discovery." Topham, who studies human immune responses to influenza infection and vaccination, said, "One can hope this will lead to novel antiviral drugs to treat severe influenza infection. This RNA-based research is only at the very beginning, but I see this as very important to the influenza field."

The researchers were originally taking a different approach to the influenza virus, which involved studying the role of RNA in viral packaging-the process by which a virus transmits its to a host cell.

"That proved to be a very difficult problem, so we changed our focus to the RNA structures in each segment of the virus," said Moss. "We found the switch from our calculations, and, fortunately, it had some interesting properties."

Turner's lab will now collaborate with Matthew Disney, associate professor of chemistry at the Scripps Research Institute, to explore the binding of known molecules to the RNA. The hope is that the next phase of the research project will reveal important insights into the behavior of the virus, including how to stop the RNA splicing process.

Explore further: Catching the cap-snatcher: Structural analysis opens the way to new anti-influenza drugs

More information: www.plosone.org/article/info%3 … journal.pone.0038323

Related Stories

Catching the cap-snatcher: Structural analysis opens the way to new anti-influenza drugs

August 2, 2012
Researchers at the European Molecular Biology Laboratory (EMBL) in Grenoble, France, have determined the detailed 3-dimensional structure of part of the flu virus' RNA polymerase, an enzyme that is crucial for influenza virus ...

New mechanism in the regulation of human genes

July 14, 2011
Scientists at the Technical University of Munich and the Helmholtz Zentrum Muenchen and along with their colleagues from the European Molecular Biology Laboratory (EMBL) in Heidelberg and the Centre for Genomic Regulation ...

Recommended for you

Estrogen discovery could shed new light on fertility problems

December 12, 2017
Estrogen produced in the brain is necessary for ovulation in monkeys, according to researchers at the University of Wisconsin-Madison who have upended the traditional understanding of the hormonal cascade that leads to release ...

3-D printed microfibers could provide structure for artificially grown body parts

December 12, 2017
Much as a frame provides structural support for a house and the chassis provides strength and shape for a car, a team of Penn State engineers believe they have a way to create the structural framework for growing living tissue ...

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

Team identifies DNA element that may cause rare movement disorder

December 11, 2017
A team of Massachusetts General Hospital (MGH) researchers has identified a specific genetic change that may be the cause of a rare but severe neurological disorder called X-linked dystonia parkinsonism (XDP). Occurring only ...

Protein Daple coordinates single-cell and organ-wide directionality in the inner ear

December 11, 2017
Humans inherited the capacity to hear sounds thanks to structures that evolved millions of years ago. Sensory "hair cells" in the inner ear have the amazing ability to convert sound waves into electrical signals and transmit ...

Gene therapy improves immunity in babies with 'bubble boy' disease

December 9, 2017
Early evidence suggests that gene therapy developed at St. Jude Children's Research Hospital will lead to broad protection for infants with the devastating immune disorder X-linked severe combined immunodeficiency disorder. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.