How attention helps you remember

September 27, 2012 by Anne Trafton
A human astrocyte cell. Credit: Wikipedia/Bruno Pascal

A new study from MIT neuroscientists sheds light on a neural circuit that makes us likelier to remember what we're seeing when our brains are in a more attentive state.

The team of found that this circuit depends on a type of cell long thought to play a supporting role, at most, in neural processing. When the brain is attentive, those cells, called astrocytes, relay messages alerting neurons of the visual cortex that they should respond strongly to whatever they are receiving.

The findings, published this week in the online edition of the , are the latest in a growing body of evidence suggesting that astrocytes are critically important for processing sensory information, says Mriganka Sur, the Paul E. and Lilah Newton Professor of Neuroscience at MIT and senior author of the paper.

Sur's lab has been studying astrocytes for about five years, as part of a longstanding interest in revealing the functions of different cell types in the cortex. The star-shaped cells were first discovered and named 150 years ago, but since then, "it's been a mystery what they do," says Sur, who is a member of MIT's Picower Institute for and director of the Simons Center for the at MIT.

Lead authors of the paper are graduate student Naiyan Chen and research scientist Hiroki Sugihara. Other authors are research scientist Jitendra Sharma, postdocs Gertrudis Perea and Jeremy Petravicz, and technical assistant Chuong Le.

Attention strengthens response

In this study, the researchers focused on what astrocytes do when the brain is stimulated to pay attention to a specific . When someone is paying close attention to something, the nucleus basalis—a structure located deep within the brain, behind the eyes—floods the brain with a neurotransmitter called acetylcholine. Some of this acetylcholine targets astrocytes in the visual cortex.

To explore how astrocytes react to this stimulation, the researchers measured what happened in the visual cortex as they showed mice several visual patterns composed of parallel lines oriented in different directions. For one of the visual patterns, the researchers also provoked the nucleus basalis to release acetylcholine at the same time. This greatly boosted calcium levels in the astrocytes, indicating high activity.

When the mice were shown the same stimuli a few minutes later, the pattern that had been presented along with acetylcholine stimulation provoked a much stronger response in neurons of the than the other patterns.

The researchers then did the same test in genetically engineered mice whose astrocytes were disabled. In those mice, the acetylcholine released by the nucleus basalis did not strengthen neurons' response to visual stimuli.

"If you are paying attention to something, which causes this release of acetylcholine, that leads to a long-lasting memory of that stimulus. If you remove the astrocytes, that doesn't happen," Sur says.

The strengthening effect lasts for tens of minutes, after which the neurons return to their original activity level in response to the selected stimulus.

"More directly than any other study to date, it illustrates the critical role of astrocytes in plasticity," says Michael Merzenich, a professor emeritus of neuroscience at the University of California at San Francisco, who was not part of the research team. "It's a crystal-clear demonstration."

'Major players in brain disorders'

It is already known that acetylcholine levels drop in the brains of patients with Alzheimer's disease. In fact, a commonly used treatment that can boost memory in Alzheimer's patients is a drug that blocks the degradation of acetylcholine. In a follow-up study, the researchers are planning to study how astrocytes are affected in mouse models of Alzheimer's.

Sur's lab is also studying the effects of nucleus basalis stimulation on inhibitory neurons. Those effects are thought to be shorter term, lasting seconds or fractions of seconds.

"You cannot understand brain disorders without understanding the basic mechanisms of cortical brain function," Sur says. "These cell types—astrocytes, inhibitory neurons—are emerging as major players in brain disorders, in unexpected ways."

Explore further: Astrocytes found to bridge gap between global brain activity and localized circuits

Related Stories

Astrocytes found to bridge gap between global brain activity and localized circuits

May 11, 2012
Global network activity in the brain modulates local neural circuitry via calcium signaling in non-neuronal cells called astrocytes (Fig. 1), according to research led by Hajime Hirase of the RIKEN Brain Science Institute. ...

Astrocytes control the generation of new neurons from neural stem cells

August 24, 2012
Astrocytes are cells that have many functions in the central nervous system, such as the control of neuronal synapses, blood flow, or the brain's response to neurotrauma or stroke.

Study provides potential explanation for mechanisms of associative memory

December 13, 2011
Researchers from the University of Bristol have discovered that a chemical compound in the brain can weaken the synaptic connections between neurons in a region of the brain important for the formation of long-term memories. ...

Recommended for you

To forget or to remember? Memory depends on subtle brain signals, scientists find

November 22, 2017
The fragrance of hot pumpkin pie can bring back pleasant memories of holidays past, while the scent of an antiseptic hospital room may cause a shudder. The power of odors to activate memories both pleasing and aversive exists ...

Pitch imperfect? How the brain decodes pitch may improve cochlear implants

November 22, 2017
Picture yourself with a friend in a crowded restaurant. The din of other diners, the clattering of dishes, the muffled notes of background music, the voice of your friend, not to mention your own – all compete for your ...

What if consciousness is not what drives the human mind?

November 22, 2017
Everyone knows what it feels like to have consciousness: it's that self-evident sense of personal awareness, which gives us a feeling of ownership and control over the thoughts, emotions and experiences that we have every ...

New research suggests high-intensity exercise boosts memory

November 22, 2017
The health advantages of high-intensity exercise are widely known but new research from McMaster University points to another major benefit: better memory.

Now you like it, now you don't: Brain stimulation can change how much we enjoy and value music

November 20, 2017
Enjoyment of music is considered a subjective experience; what one person finds gratifying, another may find irritating. Music theorists have long emphasized that although musical taste is relative, our enjoyment of music, ...

MRI uncovers brain abnormalities in people with depression and anxiety

November 20, 2017
Researchers using MRI have discovered a common pattern of structural abnormalities in the brains of people with depression and social anxiety, according to a study presented being next week at the annual meeting of the Radiological ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.