Treating disease by the numbers

September 20, 2012
Dr. Giovanna Guidobonia, associate professor of mathematics at Indiana University-Purdue University Indianapolis, and Dr. Alon Harris, professor of ophthalmology at the Indiana University School of Medicine, use ultrasound technology to measure blood flow in the eye. The data will be used in a mathematical model to better understand risk factor behavior in diseases like glaucoma and diabetes. Credit: School of Science at IUPUI

Mathematical modeling being tested by researchers at the School of Science at Indiana University-Purdue University Indianapolis (IUPUI) and the IU School of Medicine has the potential to impact the knowledge and treatment of several diseases that continue to challenge scientists across the world.

The National Science Foundation recently recognized the work led by Drs. Giovanna Guidoboni, associate professor of mathematics in the School of Science, and Alon Harris, professor of ophthalmology and director of clinical research at the Eugene and Marilyn Glick Eye Institute, for its new approach to understanding what actually causes debilitating diseases like glaucoma. Their research could translate to more efficient treatments for diseases like diabetes and hypertension as well.

Glaucoma is the second-leading cause of blindness in the world, yet the only primary form of treatment is to reduce pressure in the patient's eye. However, as many as one-third of the glaucoma patients have no elevated , and the current inability to better understand what risk factors led to the disease can hinder treatment options.

Mathematical modeling, which creates an abstract model using to describe the behavior of a system, allows doctors to better measure things like and in fine detail in the eye, the easiest to study without . Models also can be used to estimate what cannot be measured directly, such as the pressure in the ocular vessels.

Through simulations, the can help doctors determine the cause and effect of reduced blood flow, cell death and and how those risk factors affect one another in the presence of glaucoma. A better understanding of these factors—and the ability to accurately measure their interaction—could greatly improve doctors' ability to treat the root causes of disease, Harris said.

"This is a unique, fresh approach to research and treatment," Harris said. "We're talking about the ability to identify tailor-made treatments for individual patients for diseases that are multi-factorial and where it's difficult to isolate the path and physicality of the disease."

Harris and Guidoboni have worked together for the past 18 months on the project. Dr. Julia Arciero, assistant professor of mathematical sciences at IUPUI, is a principle investigator on the project as well with expertise in mathematical modeling of blood flow.

The preliminary findings have been published in the British Journal of Ophthalmology and the research currently is under review in the Journal of Mathematical Biosciences and Engineering and the European Journal of Ophthalmology. The NSF recognized their work on Aug. 30 with a three-year grant to continue their research.

The pair also presented their findings at the 2012 annual meeting of the Association for Research in Vision and Ophthalmology (ARVO). Harris suggested that, out of the 12,000 ARVO participants, their group might have been the only research group to include mathematicians, which speaks highly of the cross-disciplinary collaboration occurring regularly at IUPUI.

"We approached this as a pure math question, where you try to solve a certain problem with the data you have," said Guidoboni, co-director of the School of Science Institute for Mathematical Modeling and Computational Science (iM2CS) at IUPUI, a research center dedicated to using modeling methods to solve problems in medicine, the environment and computer science.

Guidoboni has expertise in applied mathematics. She also has a background in engineering, which she said helps her to approach medical research from a tactical standpoint where the data and feedback determine the model. She previously used modeling to better understand blood flow from the heart.

Harris said the potential impact has created quite a stir in the ocular research community.

"The response among our peers has been unheard of. The scientific community has been accepting of this new method and they are embracing it," Harris added.

The group will seek additional research funding through the National Institute of Health, The Glaucoma Foundation and other medical entities that might benefit from the research. The initial success of their collaboration should lead to more cross-disciplinary projects in the future, Guidoboni said.

Explore further: Physical fitness could have a positive effect on eye health

Related Stories

Physical fitness could have a positive effect on eye health

October 24, 2011
Physical activity may be what the doctor orders to help patients reduce their risk of developing glaucoma. According to a recently published scientific paper, higher levels of physical exercise appear to have a long-term ...

British study may improve glaucoma assessment and treatment

October 24, 2011
Results from a recent scientific study in the U.K. may change the way that healthcare professionals measure eye pressure and allow them to assess the risk of glaucoma with greater accuracy. Glaucoma is the second most common ...

New research characterizes glaucoma as neurologic disorder rather than eye disease

March 7, 2012
A new paradigm to explain glaucoma is rapidly emerging, and it is generating brain-based treatment advances that may ultimately vanquish the disease known as the "sneak thief of sight." A review now available in Ophthalmology, ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.