Excitotoxicity and nerve cell death

September 25, 2012
Excitotoxicity and nerve cell death
Credit: Thinkstock

Neural excitotoxicity can be involved in spinal cord injury, traumatic hearing loss and Alzheimer's. The Stressprotect project has gathered data on this often devastating phenomenon at biochemical, genomic and physiological levels.

Excessive stimulation by neurotransmitters such as glutamate causes . Overactivation of glutamate receptors allows high levels of to enter the cell which in turn activates a number of cell structure destruction routes.

The exceptional significance of excitotoxicity to neuronal degeneration renders this area an important research target. The Sixth Framework Programme (FP6) project Stressprotect focused on a particularly important pathway, c-Jun N-terminal kinase (JNK) to develop new ways to prevent neurological disorders caused by excitotoxicity.

Project scientists investigated the action of D-JNKI1, a peptide that is a potent inhibitor of cell death prompted by the JNK pathway. A complete characterisation of its interaction as a drug and the effects on was compiled.

One big plus is that D-JNKI1 displays selective action – it is taken into neurons where it is needed. Moreover, using in vitro and in vivo excitotoxicity models, D-JNKI1 was shown to afford protective and beneficial neuroprotection. Damage was averted during ischaemia (loss of blood supply), seizures, severing of a neuronal axon, Alzheimer's and traumatic hearing loss.

Importantly, when D-JNKI1 was applied with pure oxygen at pressure several hours after an episode of cerebral ischaemia, the area of tissue death was reduced by up to 83%. After a stroke, neurological scores and behaviour showed a lasting improvement.

Success of Stressprotect is mirrored in publication of results in some five high-ranking science journals. The Federation of European Neuroscience Societies (FENS) also presented the project's data detailing its significance to the treatment of neuronal death, central to many neurodegenerative diseases.

Related Stories

Recommended for you

Age and gut bacteria contribute to multiple sclerosis disease progression

November 17, 2017
Researchers at Rutgers Robert Wood Johnson Medical School published a study suggesting that gut bacteria at young age can contribute to multiple sclerosis (MS) disease onset and progression.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Ancient enzyme could boost power of liquid biopsies to detect and profile cancers

November 16, 2017
Scientists are developing a set of medical tests called liquid biopsies that can rapidly detect the presence of cancers, infectious diseases and other conditions from only a small blood sample. Researchers at The University ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

FDA to crack down on risky stem cell offerings

November 16, 2017
U.S. health authorities announced plans Thursday to crack down on doctors pushing stem cell procedures that pose the gravest risks to patients amid an effort to police a burgeoning medical field that previously has received ...

Engineering the gut microbiome with 'good' bacteria may help treat Crohn's disease

November 15, 2017
Penn Medicine researchers have singled out a bacterial enzyme behind an imbalance in the gut microbiome linked to Crohn's disease. The new study, published online this week in Science Translational Medicine, suggests that ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.