Experts propose 'cyber war' on cancer

September 4, 2012
There is mounting scientific evidence that cancer cells lead intricate social lives and that their social behavior often resembles the behavior of social bacteria. For example, this colony of bacteria contains pioneer cells that pave the way for colony expansion in the same way that specialized cancer cells prepare for metastasis. Credit: Eshel Ben-Jacob/Tel Aviv University

In the face of mounting evidence that cancer cells communicate, cooperate and even engage in collective decision-making, biophysicists and cancer researchers at Rice University, Tel Aviv University and Johns Hopkins University are suggesting a new strategy for outsmarting cancer through its own social intelligence.

"We need to get beyond the notion that is a random collection of cells running amok," said Herbert Levine, co-director of Rice's Center for Theoretical Biological Physics (CTBP) and co-author of the cover article in this week's Trends in Microbiology that pulls together dozens of recent discoveries about the social behavior of cancer cells. "These cells lead sophisticated social lives."

Article co-author Eshel Ben-Jacob, a senior investigator at CTBP, said, "Cancer is a sophisticated enemy. There's growing evidence that cancer cells use advanced communications to work together to enslave normal cells, create metastases, resist drugs and decoy the body's immune system."

Ben-Jacob, Levine and Donald Coffey, a noted cancer researcher at Johns Hopkins, suggest in the article that cancer researchers act like modern generals and go after their enemy's command, control and communication capabilities. The article is in volume 20, issue 9, pages 403-410 of the journal.

"It's time to declare a on cancer," said Ben-Jacob, who, along with Coffey, is speaking today at a workshop titled "Failures in Clinical " at Princeton University.

Ben-Jacob said cancer cells have been shown to cooperate to elude chemotherapy drugs, much like bacteria that communicate and act as a team to resist attacks from antibiotics. He said some cancers appear to sense when are present and sound an alarm that causes cells throughout a tumor to switch into a dormant state. Similar signals are later used to sound the "all clear" and reawaken cells inside the tumor.

"If we can break the communication code, we may be able to prevent the cells from going dormant or to reawaken them for a well-timed chemotherapeutic attack," Ben-Jacob said. "This is just one example. Our extensive studies of the social lives of bacteria suggest a number of others, including sending signals that trigger the cancer cells to turn upon themselves and kill one another."

The article cites numerous examples of similarities between the behavior of bacterial colonies and cancerous tumors.

"The parallels between the communal behaviors of bacteria and suggest that bacteria can serve as a valuable model system for studying cancer," said Coffey, professor of urology, oncology, pathology and pharmacology and molecular sciences at the Johns Hopkins University School of Medicine. "We believe this approach could be particularly valuable for investigating intractable problems like metastasis, relapse and multiple drug resistance."

Levine, Rice's Karl F. Hasselmann Professor in Bioengineering, and fellow CTBP co-director José Onuchic were recruited to Houston last year, thanks in part to a grant from the Cancer Prevention and Research Institute of Texas (CPRIT) that was designed to spur new thinking about cancer and foster collaborations between CTBP scientists and cancer specialists in the Texas Medical Center.

"This opinion article reflects the multidisciplinary strategy of the CTBP—to communicate and work together with researchers across disciplines for solving the biomedical challenges of our time," said Onuchic, Rice's Harry C. and Olga K. Wiess Professor of Physics and Astronomy and professor of chemistry.

Ben-Jacob, the Maguy-Glass Chair in Physics of Complex Systems and professor of physics and astronomy at Tel Aviv University, worked previously with Levine and Onuchic on a number of groundbreaking studies about the underlying biophysics of bacterial social behavior. He joined Rice University this summer as senior investigator of the CTBP and adjunct professor of chemistry and cell biology.

Explore further: Launching a 'social networking war' against cancer

More information: www.sciencedirect.com/science/ … ii/S0966842X12001011

Related Stories

Launching a 'social networking war' against cancer

August 14, 2012
Experts agree that, more than ever before, modern wars will be fought in the cyber zone, targeting an enemy's communications technology to cause untold damage. Now a Tel Aviv University researcher is suggesting that the same ...

Protein 'switches' could turn cancer cells into tiny chemotherapy factories

September 23, 2011
Johns Hopkins researchers have devised a protein "switch" that instructs cancer cells to produce their own anti-cancer medication.

Ovarian cancer cells hijack surrounding tissues to enhance tumor growth

September 4, 2012
Tumor growth is dependent on interactions between cancer cells and adjacent normal tissue, or stroma. Stromal cells can stimulate the growth of tumor cells; however it is unclear if tumor cells can influence the stroma.

Recommended for you

Researchers develop test that can diagnose two cancer types

December 12, 2017
A blood test using infrared spectroscopy can be used to diagnose two types of cancer, lymphoma and melanoma, according to a study led by Georgia State University.

Atoh1, a potential Achilles' heel of Sonic Hedgehog medulloblastoma

December 12, 2017
Medulloblastoma is the most common type of solid brain tumor in children. Current treatments offer limited success and may leave patients with severe neurological side effects, including psychiatric disorders, growth retardation ...

Cancer-causing mutation suppresses immune system around tumours

December 12, 2017
Mutations in 'Ras' genes, which drive 25% of human cancers by causing tumour cells to grow, multiply and spread, can also protect cancer cells from the immune system, finds a new study from the Francis Crick Institute and ...

Drug suppresses spread of breast cancer caused by stem-like cells

December 12, 2017
Rare stem-like tumor cells play a critical role in the spread of breast cancer, but a vulnerability in the pathway that powers them offers a strategy to target these cells using existing drugs before metastatic disease occurs, ...

MRI scans predict patients' ability to fight the spread of cancer

December 12, 2017
A simple, non-invasive procedure that can indicate how long patients with cancer that has spread to the brain might survive and whether they are likely to respond to immunotherapy has been developed by researchers in Liverpool.

Scientists discover possible master switch for programming cancer immunotherapy

December 11, 2017
During infection or tumor growth, a type of specialized white blood cells called CD8+ T cells rapidly multiply within the spleen and lymph nodes and acquire the ability to kill diseased cells. Some of these killer T cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.