Key mechanism for controlling body's inflammatory response discovered

September 30, 2012

Researchers at Queen Mary, University of London have discovered how a key molecule controls the body's inflammatory responses. The molecule, known as p110delta, fine-tunes inflammation to avoid excessive reactions that can damage the organism. The findings, published in Nature Immunology today, could be exploited in vaccine development and new cancer therapies.

A healthy immune system reacts to danger signals – from microorganisms such as bacteria and viruses, or from the body's own , such as . This tightly controlled reaction starts with an inflammatory phase that alerts and activates the body to react against the danger signals. Once the danger has been cleared, it is critical that the body's inflammatory phase is shut down to avoid overreaction.

Control over the timing of inflammation is essential and is disrupted in a range of diseases: inflammation that is triggered too quickly or not controlled appropriately can lead to a potentially lethal endotoxic (septic) shock or, in a more chronic state, contribute to the development of diseases such as cancer, arthritis, asthma and multiple sclerosis.

A better understanding of the involved in orchestrating the body's will help in the development of better and more targeted treatments for a variety of diseases.

Professor Bart Vanhaesebroeck, from the Barts Cancer Institute at Queen Mary, University of London, who supervised the research, said: "For years scientists have been puzzled by the way in which p110delta can both fuel and restrain inflammatory reactions in the body. Thanks to the improved understanding that we have achieved through use of genetics and pharmacology, we have now identified one of the specific pathways that p110delta controls."

The researchers found that p110delta balances the immune response by regulating a particular type of immune cell, the dendritic cell. These cells sense and initiate an immune response, primarily provoking inflammation when they encounter "foreign bodies", including bacteria. By using from mice that lacked active p110delta, the study found that p110delta controls the transition of a bacteria-sensing receptor (TLR4) from the surface of the dendritic cell into its interior, a key step which allows the dendritic cell to initiate the shut-down phase of the inflammation.

Dr Ezra Aksoy, from the Barts Cancer Institute, the first author of the paper, said: "Temporarily interfering with p110delta activity could allow us to modulate the balance between the inflammatory and anti-inflammatory pathways, opening up new therapeutic avenues to be exploited in the fields of vaccination, cancer immunotherapy and chronic inflammatory diseases."

Explore further: Dendritic cells control lymphocyte entry into lymph nodes

Related Stories

Dendritic cells control lymphocyte entry into lymph nodes

November 17, 2011
Dendritic cells, discovered in 1973 by Ralph Steinman (2011 Nobel prize in Physiology or Medicine) and known for their role as sentinels of the immune system, have an essential function in the development of high endothelial ...

Gatekeeper signal controls skin inflammation

January 26, 2012
A new study unravels key signals that regulate protective and sometimes pathological inflammation of the skin. The research, published online on January 26th in the journal Immunity by Cell Press, identifies a "gatekeeper" ...

Recommended for you

Bacterial pathogens outwit host immune defences via stealth mechanisms

October 20, 2017
Despite their relatively small genome in comparison to other bacteria, mycoplasmas can cause persistent and often difficult-to-treat infections in humans and animals. An extensive study by researchers from Vetmeduni Vienna ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Scientists find where HIV 'hides' to evade detection by the immune system

October 19, 2017
In a decades-long game of hide and seek, scientists from Sydney's Westmead Institute for Medical Research have confirmed for the very first time the specific immune memory T-cells where infectious HIV 'hides' in the human ...

Researchers release the brakes on the immune system

October 18, 2017
Many tumors possess mechanisms to avoid destruction by the immune system. For instance, they misuse the natural "brakes" in the immune defense mechanism that normally prevent an excessive immune response. Researchers at the ...

How cytoplasmic DNA triggers inflammation in human cells

October 17, 2017
A team led by LMU's Veit Hornung has elucidated the mechanism by which human cells induce inflammation upon detection of cytoplasmic DNA. Notably, the signal network involved differs from that used in the same context in ...

Gene transcription in virus-specific CD8 T cells differentiates chronic from resolving HCV

October 17, 2017
Massachusetts General Hospital (MGH) investigators have identified differences in gene transcription within key immune cells that may distinguish those individuals infected with the hepatitis C virus (HCV) who develop chronic ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.