Fly neurons could reveal the root of Alzheimer's disease

September 24, 2012
Fly neurons could reveal the root of Alzheimer's disease

(Medical Xpress)—Although they're a common nuisance in the home, fruit flies have made great contributions to research in genetics and developmental biology. Now a Tel Aviv University researcher is again turning to this everyday pest to answer crucial questions about how neurons function at a cellular level—which may uncover the secrets of neurological disorders such as Alzheimer's disease.

Approximately 75 percent of the genes that are related to diseases in humans are also to be found in the fly, says Ya'ara Saad, a PhD candidate in the lab of Prof. Amir Ayali at TAU's Department of Zoology and the Sagol School of Neurosciences. There are many similarities in the functioning of the nervous system in both organisms, and by observing how taken from the fly grow and function outside of the body, there are many clues to the way human interact and the factors that influence their viability and physiology.

Saad's work, which has been published in the Journal of Molecular Histology, could help researchers to better understand how individual neurons are physically and chemically altered in response to disease and , and lead to new treatments.

Testing medications cell by cell

Saad is exploring how neural networks develop one neuron at a time. In the lab, the researchers break the fly's nervous system down into single cells, separate these cells, then place them at a distance from each other in a . After a few days, the neurons begin to grow towards one another and establish connections, and then migrate to form clusters of cells. Finally, they re-organize themselves to form a sophisticated network, says Saad. Because these experiments uniquely allow researchers to concentrate on individual neurons, they can perform specific measurements of proteins, note , watch develop, and see how physical changes take shape.

Saad and her fellow researchers are using this technique to observe how neurodegenerative diseases take over the neurons and to potentially test various medicinal interventions. In their experiments, one group of flies is genetically modified so that it expresses a peptide called Amyloid Beta, found in protein-based plaques of human Alzheimer's disease patients. The results of these studies are then compared to those of a non-modified control group. Both strains of flies are provided by Prof. Daniel Segal of TAU's Department of Molecular Microbiology and Biotechnology.

Previous studies performed on flies expressing Amyloid Beta showed that they demonstrate Alzheimer's-like symptoms such as motor problems, impaired learning capabilities, and shorter lifespans. While this peptide has been researched for quite some time, scientists still do not know how it functions. Saad says her work may help unlock the mystery of this function. "Now I can really get into the molecular operation of Amyloid Beta inside the cell. I can watch the dysfunction in the synapses, monitor the proteins involved, and record electrical activity in a much more accessible way," she says.

Testing pharmacological agents is as simple as putting the medication into the dish and following how the cells change in response, Saad explains. Her next step will be to test various medications and search for a treatment that restores normal function, morphology, and chemical make-up to the neurons.

The benefits of invertebrates

As one of the first organisms for which scientists cracked the entire genome, there is a wealth of genetic information about the fruit fly, making it an ideal subject for her research, explains Saad. Though fly brains are simpler than those of human brains, the neurons are the same size and structure, and possess similar chemical activity. With a life span of 30 days on average, flies have a short aging process, an important consideration for the study of neurodegenerative diseases.

"A lot of basic discoveries in neurobiology have been made on invertebrates. If you want to see things on a , there are a lot of advantages to using these models," says Saad. She also says that using insects instead of mammals as experimental subjects has an additional plus: no ethical approval is necessary until the research is advanced enough to move on to more sophisticated life forms.

Explore further: Two defective proteins conspire to impair the nerve cell's 'powerhouse' in Alzheimer's disease

Related Stories

Two defective proteins conspire to impair the nerve cell's 'powerhouse' in Alzheimer's disease

May 13, 2011
Two proteins that are abnormally modified in the brains of patients with Alzheimer disease collude, resulting in ill effects on the crucial energy centers of brain cells, according to new findings published online in Neurobiology ...

Turmeric-based drug effective on Alzheimer flies

February 14, 2012
Curcumin, a substance extracted from turmeric, prolongs life and enhances activity of fruit flies with a nervous disorder similar to Alzheimers. The study conducted at Linköping University, indicates that it is the initial ...

Scientists discover new mechanism that may be important for learning and memory

July 14, 2011
(Medical Xpress) -- New findings in mice suggest that the timing when the neurotransmitter acetylcholine is released in the brain’s hippocampus may play a key role in regulating the strength of nerve cell connections, ...

Recommended for you

New approach helps rodents with spinal cord injury breathe on their own

October 17, 2017
One of the most severe consequences of spinal cord injury in the neck is losing the ability to control the diaphragm and breathe on one's own. Now, investigators show for the first time in laboratory models that two different ...

Pair of discoveries illuminate new paths to flu and anthrax treatments

October 17, 2017
Two recent studies led by biologists at the University of California San Diego have set the research groundwork for new avenues to treat influenza and anthrax poisoning.

A new compound targets energy generation, thereby killing metastatic cells

October 17, 2017
Cancer can most often be successfully treated when confined to one organ. But a greater challenge lies in treating cancer that has metastasized, or spread, from the primary tumor throughout the patient's body. Although immunotherapy ...

New method to measure how drugs interact

October 17, 2017
Cancer, HIV and tuberculosis are among the many serious diseases that are frequently treated with combinations of three or more drugs, over months or even years. Developing the most effective therapies for such diseases requires ...

Research finds that zinc binding is vital for regulating pH levels in the brain

October 17, 2017
Researchers in Oslo, Norway, have discovered that zinc binding plays an important role in the sensing and regulation of pH in the human brain. The findings come as one of the first studies that directly link zinc binding ...

Researchers find factor that delays wound healing

October 17, 2017
New research carried out at The University of Manchester has identified a bacterium—normally present on the skin that causes poor wound healing in certain conditions.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.