Modeling sepsis in newborns

September 6, 2012

Sepsis, or bacterial infection of the bloodstream, is a grave, hard-to-diagnose threat in premature newborns in the NICU. Even when it's detected and treated with antibiotics, its inflammatory effects can harm fragile babies' development. Now, researchers at Boston Children's Hospital have modeled the effects of sepsis on the unique newborn immune system, using mice. They and others have begun using the model to identify diagnostic markers and better treatments.

The new model is described September 6 in the online open-access journal .

Premature infants typically are kept alive with catheters and intravenous lines that are vital for their care, but that also carry a risk of , most commonly from the bacterium . can now avoid many of these infections, but those that slip through can be hard to spot and treat.

"When infection occurs, it's hard to detect in newborns, who can't speak and, due to their unique immune systems, tend not to have fevers or show clinical signs," explains Ofer Levy, MD, PhD, of the Division of Infectious Diseases at Boston Children's and senior author on the paper. "There may be irregular breathing or increased heart rate, or the baby may be acting a little 'off,' but these signs are pretty nonspecific. There's a tremendous need for better diagnostics in this field."

Mouse models of intravenous infections in newborns have been lacking, due to the technical challenge of working with tiny newborn mice. With great , Kenny Kronforst, MD, MPH, a clinical Newborn Medicine fellow working in Levy's lab and first author on the paper, was able to inject live S. epidermidis into the tiny animals' jugular veins, simulating what happens when an IV or catheter infection occurs in an hours-old preemie in the NICU.

The findings surprised the team—and gave hope.

"Newborns have traditionally been considered immunologically immature and distinct from adults in their ability to fight off infection," says Kronforst, now an attending physician in neonatology at Lurie Children's Hospital of Chicago. "Through our model, we have shown that there is a robust inflammatory response to bacterial challenge even at the earliest hours of life. Additionally, we were able to reproduce many clinical features of sepsis that we see in human infants. Because of these features, our model is ideal for exploring novel diagnostic and therapeutic possibilities—something we're extremely excited about."

For example, one part of the inflammatory response, also known to occur in human newborns, was increased production of a molecule called Toll-like receptor-2 (TLR2). Levy's team and others are now evaluating TLR2 as a potential biomarker for detecting sepsis, as well as a potential target for treatments to suppress the inflammation.

"We can now try to block TLR2 in our model, to see if we can clear bacteria faster and prevent inflammatory damage," Levy says.

Even when babies with sepsis are treated with antibiotics, the inflammatory response to the infection can be just as harmful. "Infants spend a lot of energy fighting the infection, and the inflammatory response impairs weight gain," says Levy.

Impaired weight gain was also seen in the mouse model. A separate study with the model, presented at last May's Pediatric Academic Society meeting, linked increased TLR2 production with another kind of damage: impaired development of the brain's white matter.

"There's an emerging literature showing that having bacteria in the bloodstream is harmful to the newborn brain, and that the harms the brain even if the is cleared," Levy says. "That raises the bar tremendously for detection and treatment."

Levy and his colleagues have been invited to apply for funding to develop new treatments using their .

Explore further: Molecular causes for life-threatening fungal infections in case of sepsis unravelled

More information: dx.plos.org/10.1371/journal.pone.0043897

Related Stories

Molecular causes for life-threatening fungal infections in case of sepsis unravelled

July 27, 2012
(Medical Xpress) -- Pathogenic fungi cause infections with a high mortality rate in patients with weakened immune systems. At Karl Kuchler’s CD Laboratory at the MedUni Vienna, the molecular causes of the life-threatening ...

An advance for a newborn vaccine approach

April 13, 2011
(PhysOrg.com) -- Infectious disease is a huge cause of death globally, and is a particular threat to newborns whose immune systems respond poorly to most vaccines. A new approach developed at Children's Hospital Boston, using ...

'Blueprint' for blocking MMP may unlock new treatments for deadly blood infection

May 18, 2011
Researchers studying the life threatening infectious disease sepsis have discovered how the infection can lead to a fatal inflammatory response through blood vessel cells. The research, which is published in EMBO Molecular ...

Streptococci and E. coli continue to put newborns at risk for sepsis

April 25, 2011
Bloodstream infections in newborns can lead to serious complications with substantial morbidity and mortality. What's more, the pathogens responsible for neonatal infections have changed over time. In recent years, however, ...

Recommended for you

Lactation hormone also helps a mother's brain

September 26, 2017
The same hormone that stimulates milk production for lactation, also acts in the brain to help establish the nurturing link between mother and baby, University of Otago researchers have revealed for the first time.

Image ordering often based on factors other than patient need: study

September 25, 2017
Do you really need that MRI?

Bone marrow concentrate improves joint transplants

September 25, 2017
Biologic joint restoration using donor tissue instead of traditional metal and plastic may be an option for active patients with joint defects. Although recovery from a biologic joint repair is typically longer than traditional ...

Researchers describe mechanism that underlies age-associated bone loss

September 22, 2017
A major health problem in older people is age-associated osteoporosis—the thinning of bone and the loss of bone density that increases the risk of fractures. Often this is accompanied by an increase in fat cells in the ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.