Modeling sepsis in newborns

September 6, 2012, Children's Hospital Boston

Sepsis, or bacterial infection of the bloodstream, is a grave, hard-to-diagnose threat in premature newborns in the NICU. Even when it's detected and treated with antibiotics, its inflammatory effects can harm fragile babies' development. Now, researchers at Boston Children's Hospital have modeled the effects of sepsis on the unique newborn immune system, using mice. They and others have begun using the model to identify diagnostic markers and better treatments.

The new model is described September 6 in the online open-access journal .

Premature infants typically are kept alive with catheters and intravenous lines that are vital for their care, but that also carry a risk of , most commonly from the bacterium . can now avoid many of these infections, but those that slip through can be hard to spot and treat.

"When infection occurs, it's hard to detect in newborns, who can't speak and, due to their unique immune systems, tend not to have fevers or show clinical signs," explains Ofer Levy, MD, PhD, of the Division of Infectious Diseases at Boston Children's and senior author on the paper. "There may be irregular breathing or increased heart rate, or the baby may be acting a little 'off,' but these signs are pretty nonspecific. There's a tremendous need for better diagnostics in this field."

Mouse models of intravenous infections in newborns have been lacking, due to the technical challenge of working with tiny newborn mice. With great , Kenny Kronforst, MD, MPH, a clinical Newborn Medicine fellow working in Levy's lab and first author on the paper, was able to inject live S. epidermidis into the tiny animals' jugular veins, simulating what happens when an IV or catheter infection occurs in an hours-old preemie in the NICU.

The findings surprised the team—and gave hope.

"Newborns have traditionally been considered immunologically immature and distinct from adults in their ability to fight off infection," says Kronforst, now an attending physician in neonatology at Lurie Children's Hospital of Chicago. "Through our model, we have shown that there is a robust inflammatory response to bacterial challenge even at the earliest hours of life. Additionally, we were able to reproduce many clinical features of sepsis that we see in human infants. Because of these features, our model is ideal for exploring novel diagnostic and therapeutic possibilities—something we're extremely excited about."

For example, one part of the inflammatory response, also known to occur in human newborns, was increased production of a molecule called Toll-like receptor-2 (TLR2). Levy's team and others are now evaluating TLR2 as a potential biomarker for detecting sepsis, as well as a potential target for treatments to suppress the inflammation.

"We can now try to block TLR2 in our model, to see if we can clear bacteria faster and prevent inflammatory damage," Levy says.

Even when babies with sepsis are treated with antibiotics, the inflammatory response to the infection can be just as harmful. "Infants spend a lot of energy fighting the infection, and the inflammatory response impairs weight gain," says Levy.

Impaired weight gain was also seen in the mouse model. A separate study with the model, presented at last May's Pediatric Academic Society meeting, linked increased TLR2 production with another kind of damage: impaired development of the brain's white matter.

"There's an emerging literature showing that having bacteria in the bloodstream is harmful to the newborn brain, and that the harms the brain even if the is cleared," Levy says. "That raises the bar tremendously for detection and treatment."

Levy and his colleagues have been invited to apply for funding to develop new treatments using their .

Explore further: Molecular causes for life-threatening fungal infections in case of sepsis unravelled

More information: dx.plos.org/10.1371/journal.pone.0043897

Related Stories

Molecular causes for life-threatening fungal infections in case of sepsis unravelled

July 27, 2012
(Medical Xpress) -- Pathogenic fungi cause infections with a high mortality rate in patients with weakened immune systems. At Karl Kuchler’s CD Laboratory at the MedUni Vienna, the molecular causes of the life-threatening ...

An advance for a newborn vaccine approach

April 13, 2011
(PhysOrg.com) -- Infectious disease is a huge cause of death globally, and is a particular threat to newborns whose immune systems respond poorly to most vaccines. A new approach developed at Children's Hospital Boston, using ...

'Blueprint' for blocking MMP may unlock new treatments for deadly blood infection

May 18, 2011
Researchers studying the life threatening infectious disease sepsis have discovered how the infection can lead to a fatal inflammatory response through blood vessel cells. The research, which is published in EMBO Molecular ...

Streptococci and E. coli continue to put newborns at risk for sepsis

April 25, 2011
Bloodstream infections in newborns can lead to serious complications with substantial morbidity and mortality. What's more, the pathogens responsible for neonatal infections have changed over time. In recent years, however, ...

Recommended for you

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.