Stem cell research: Method to identify origins of new Leydig cells in males

September 6, 2012

(Medical Xpress)—Researchers at the Johns Hopkins Bloomberg School of Public Health have developed a new way to identify and study the stem cells that are capable of giving rise to new Leydig cells in adult testes.

Leydig cells produce testosterone, which affects not only the but also , cognition, and . Adult Leydig cells, once formed, rarely die or divide if left undisturbed, but can regenerate if experimentally depleted. The that give rise to the new cells are difficult to study because they, too, usually remain quiescent and their behavior is tightly controlled by the cells surrounding them.

In a study published in the journal Endocrinology, the Johns Hopkins researchers employed two approaches tostudy these cells. In one approach, they isolated and cultured the from the testes of rats. In another approach, they isolated and cultured the two major components of the testis, the seminiferous tubules and the interstitium. With the first approach, the researchers isolated undifferentiated cells that were able to self-renew or differentiate in vitro into testosterone-producing cells. Using the second approach, the researchers found that the seminiferous tubules had undifferentiated cells on their surfaces that also were able to self-renew or differentiate. In contrast to the isolated cells, the differentiated cells on the tubule surfaces produced testosterone remarkably robustly. When the newly formed, differentiated cells were removed from the tubule surfaces and the tubules were cultured again, testosterone-producing cells reappeared. This regenerative ability provided further evidence of the presence of stem cells.

"It is always a challenge to study low-turnover stem cells in adult tissue, and it is difficult to study the factors that regulate the cells because of the complexity of the tissue," said study senior author Haolin Chen, PhD, a senior scientist with the Bloomberg School's Department of Biochemistry and Molecular Biology. "The culture system that we developed has enabled us to begin to examine the behavior of the stem cells in vitro in the presence of their niche."

"The in vitro systems that Dr. Chen and then PhD candidate Erin Stanley developed should enable investigators to obtain critical information about the cellular and molecular mechanisms by which the stem cells self-renew and differentiate. Eventually, these studies might lead to the use of stem to treat androgen deficiency in aging men," said Barry Zirkin, PhD, co-author of the study and professor in the Department of Biochemistry and Molecular Biology.

Explore further: Controlling self-renewal of stem cells

More information: "Identification, Proliferation and Differentiation of Adult Leydig Stem Cells", Endocrinology, 2012.

Related Stories

Controlling self-renewal of stem cells

September 2, 2011
(PhysOrg.com) -- Scientists from the Friedrich Miescher Institute for Biomedical Research (FMI) are the first to establish a direct link between a conserved stem cell factor and the cell cycle regulation in adult stem cells. ...

Recommended for you

Researchers describe mechanism that underlies age-associated bone loss

September 22, 2017
A major health problem in older people is age-associated osteoporosis—the thinning of bone and the loss of bone density that increases the risk of fractures. Often this is accompanied by an increase in fat cells in the ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.