Hopes that new substance will induce cancer cell suicide

September 18, 2012

(Medical Xpress)—The p53 gene plays a key role in the prevention of cancer, by blocking cell growth and triggering programmed cell death or apoptosis. If, however, p53 has mutated and become defective, the cancer cells can acquire the ability to evade apoptosis and become more resistant to therapy. Researchers at Karolinska Institutet and Karolinska University Hospital have now obtained results from the first tests using a new substance that can restore the function of defective p53 and activate apoptosis in cancer cells.

The substance is known as APR-246 and has now been tested on humans in a phase I/II study, which was conducted on 22 patients with advanced blood or . Some of the patients came from the Haematology Centre at the Karolinska University Hospital in, Stockholm, where the study's lead investigator, consultant Dr Sören Lehmann is based. The remainder of the patients were from other clinics in Gothenburg, Lund, Uppsala and Örebro.

The patients received daily infusions of APR-246 for four days. When the researchers analyzed the cancer cells taken before and after treatment, they saw indications that the had been activated to varying degrees, and that this had triggered the suicide program in the . Ten patients could be evaluated as regards the development of their cancer, and in two of them there were signs of tumour regression.

However, the study was actually not designed to test the clinical effects but to ascertain how well the substance was tolerated by the body. With the main confined to temporary , nausea, headache and confusion, their results would suggest that the substance is well tolerated.

"The side-effects were totally different to those produced by conventional chemotherapy, which bodes well for designing combination therapies," says Dr Lehmann. "And it's in precisely this kind of combination that we think the substance has the greatest potential. In previous laboratory studies we've seen that APR-246 has generated synergy gains when used with chemotherapy due to the mutually enhancing effects of both substances."

Defective p53 is considered one of the most common factors behind the development of cancer. In some cancers, such as ovarian cancer, the vast majority of tumours have defective p53. In total, the p53 tumour suppressor gene is mutated in at least half of all tumours.

"In theory, a drug that restores p53 function should be effective against many different kinds of cancer, provided that the individual tumour contains defective p53," says study team member Professor Klas Wiman. "We should keep in mind, however, that tumours are very complex."

Explore further: Drug kills cancer cells by restoring faulty tumor suppressor

More information: Sören Lehmann, et al. Targeting p53 in vivo: A first-in-man study with the p53-targeting compound APR-246 (PRIMA-1MET) in refractory hematological malignancies and prostate cancer. Journal of Clinical Oncology, early online publication 10 September 2012, doi: 10.1200/JCO.2011.40.7783.

Related Stories

Drug kills cancer cells by restoring faulty tumor suppressor

May 14, 2012
A new study describes a compound that selectively kills cancer cells by restoring the structure and function of one of the most commonly mutated proteins in human cancer, the "tumor suppressor" p53. The research, published ...

Three is the magic number: A chain reaction required to prevent tumor formation

January 20, 2012
Protein p53 is known for controlling the life and death of a cell and has a key role in cancer research. P53 is known to be inactive in 50 percent of cancer patients. If researchers succeed in re-establishing the presence ...

Recommended for you

Lung cancer triggers pulmonary hypertension

November 17, 2017
Shortness of breath and respiratory distress often increase the suffering of advanced-stage lung cancer patients. These symptoms can be triggered by pulmonary hypertension, as scientists at the Max Planck Institute for Heart ...

Researchers discover an Achilles heel in a lethal leukemia

November 16, 2017
Researchers have discovered how a linkage between two proteins in acute myeloid leukemia enables cancer cells to resist chemotherapy and showed that disrupting the linkage could render the cells vulnerable to treatment. St. ...

Computer program finds new uses for old drugs

November 16, 2017
Researchers at the Case Comprehensive Cancer Center at Case Western Reserve University School of Medicine have developed a computer program to find new indications for old drugs. The computer program, called DrugPredict, ...

Pharmacoscopy improves therapy for relapsed blood cancer in a first clinical trial

November 16, 2017
Researchers at CeMM and the Medical University of Vienna presented a preliminary report in The Lancet Hematology on the clinical impact of an integrated ex vivo approach called pharmacoscopy. The procedures measure single-cell ...

Wider sampling of tumor tissues may guide drug choice, improve outcomes

November 15, 2017
A new study focused on describing genetic variations within a primary tumor, differences between the primary and a metastatic branch of that tumor, and additional diversity found in tumor DNA in the blood stream could help ...

A new strategy for prevention of liver cancer development

November 14, 2017
Primary liver cancer is now the second leading cause of cancer-related death worldwide, and its incidences and mortality are increasing rapidly in the United Stated. In late stages of the malignancy, there are no effective ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.