In cancer, an embryonic gene-silencing mechanism gone awry

October 4, 2012

There are some genes that are only activated in the very first days of an embryo's existence. Once they have accomplished their task, they are shut down forever, unlike most of our genes, which remain active throughout our lives. EPFL scientists have unveiled part of this strange mechanism. The same process, accidentally initiated later in life, could be responsible for many kinds of cancer. The discovery is described in a recent article in the journal Cell Reports.

The researchers identified a group of proteins that play a key role in this phenomenon. They bind to a DNA sequence near the gene, and substitute one DNA element for another, essentially "marking" the sequence. This phenomenon is known as "methylation." Once the marker is in place, the recognizes the sign and maintains the gene in a dormant state.

"It's an extremely elegant mechanism. The genes are needed right at the beginning of embryonic development, but rather than deactivate them every time a cell divides, the job is done in one fell swoop, once the genes are no longer required," explains EPFL professor Didier Trono, who co-authored the article. "This process is also involved in the control of , which make up almost half of our genome, and must be inactivated very early in development."

This gene-silencing mechanism, which normally takes place in a several-day-old embryo, can also occur accidentally later in life. In many , certain genes have been marked by methylation; they have been silenced. If, for example, the gene responsible for controlling cell division has been methylated, the consequences are all too easy to imagine. "The embryonic process, which is designed to silence certain genes, can be fortuitously reactivated, leading to the formation of ."

It is still not understood why the process stops after the first days of , even though many of the active proteins continue to be expressed in the cell, says Trono. "If we can figure out how this cellular clock works, then we would perhaps be able to understand how the mechanism is reactivated later, leading to the development of cancer."

Explore further: Scientists complete first mapping of molecule found in human embryonic stem cells

Related Stories

Scientists complete first mapping of molecule found in human embryonic stem cells

July 21, 2011
Stem cell researchers at UCLA have generated the first genome-wide mapping of a DNA modification called 5-hydroxymethylcytosine (5hmC) in embryonic stem cells, and discovered that it is predominantly found in genes that are ...

Study discovers genetic pathway impacting the spread of cancer cells

May 3, 2012
In a new study from Lawson Health Research Institute, Dr. Joseph Torchia has identified a new genetic pathway influencing the spread of cancer cells. The discovery of this mechanism could lead to new avenues for treatment.

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.