In cancer, an embryonic gene-silencing mechanism gone awry

October 4, 2012, Ecole Polytechnique Federale de Lausanne

There are some genes that are only activated in the very first days of an embryo's existence. Once they have accomplished their task, they are shut down forever, unlike most of our genes, which remain active throughout our lives. EPFL scientists have unveiled part of this strange mechanism. The same process, accidentally initiated later in life, could be responsible for many kinds of cancer. The discovery is described in a recent article in the journal Cell Reports.

The researchers identified a group of proteins that play a key role in this phenomenon. They bind to a DNA sequence near the gene, and substitute one DNA element for another, essentially "marking" the sequence. This phenomenon is known as "methylation." Once the marker is in place, the recognizes the sign and maintains the gene in a dormant state.

"It's an extremely elegant mechanism. The genes are needed right at the beginning of embryonic development, but rather than deactivate them every time a cell divides, the job is done in one fell swoop, once the genes are no longer required," explains EPFL professor Didier Trono, who co-authored the article. "This process is also involved in the control of , which make up almost half of our genome, and must be inactivated very early in development."

This gene-silencing mechanism, which normally takes place in a several-day-old embryo, can also occur accidentally later in life. In many , certain genes have been marked by methylation; they have been silenced. If, for example, the gene responsible for controlling cell division has been methylated, the consequences are all too easy to imagine. "The embryonic process, which is designed to silence certain genes, can be fortuitously reactivated, leading to the formation of ."

It is still not understood why the process stops after the first days of , even though many of the active proteins continue to be expressed in the cell, says Trono. "If we can figure out how this cellular clock works, then we would perhaps be able to understand how the mechanism is reactivated later, leading to the development of cancer."

Explore further: Scientists complete first mapping of molecule found in human embryonic stem cells

Related Stories

Scientists complete first mapping of molecule found in human embryonic stem cells

July 21, 2011
Stem cell researchers at UCLA have generated the first genome-wide mapping of a DNA modification called 5-hydroxymethylcytosine (5hmC) in embryonic stem cells, and discovered that it is predominantly found in genes that are ...

Study discovers genetic pathway impacting the spread of cancer cells

May 3, 2012
In a new study from Lawson Health Research Institute, Dr. Joseph Torchia has identified a new genetic pathway influencing the spread of cancer cells. The discovery of this mechanism could lead to new avenues for treatment.

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.