E. coli adapts to colonize plants

October 30, 2012

New research from the Institute of Food Research has given new clues as to how some E. coli strains, normally at home in mammalian gastrointestinal tracts, have adopted slightly different transmission strategies, with some being better adapted to live on plants than others.

In the light of recent outbreaks of due to contamination of vegetables by dangerous strains of E. coli, this information will be useful to making sure our food remains safe. E. coli is most at home in the warm, moist, nutrient-rich environment found in the of warm-blooded animals. But to disperse from one host to another these bacteria must get out into the world. There is evidence that some E. coli can survive for several weeks outside the host, and even grow in water or soil. But it is on plant matter that E. coli colonisation has become a concern, as although most types of E. coli are harmless, the presence of on fruit and vegetables presents a risk.

To find out more, the IFR team took the first comprehensive look at the differences between the populations of E. coli growing on crop plants and populations in the mammalian gut. Funded by the Biotechnology and Biological Sciences Research Council, they took over 100 isolates from leafy parts of vegetables growing in fields in England. Analysis of these showed that even within the same field the E. coli population is diverse and complex. They then compared these isolates with a standard reference collection of E. coli taken from mammals, including humans, from different continents. Profiling the two groups found a number of significant differences depending on the source of isolation. Compared to the habitat inside the gut, a leaf surface is a hostile environment for . The temperature fluctuates away from the constant 37 °C inside our bodies, and there is a greater risk of drying out.

The researchers found that E. coli populations derived from plants tended to form biofilms more readily. Biofilms are complex structures formed by populations of bacteria coming together to make a thin film over a surface. They are held together by a protective extracellular matrix of proteins and sugars, and the researchers saw that there was also an increase in the production of components of this matrix in E. coli derived from the fields. These strains also used sucrose and other plant-derived sugars more than the E. coli populations derived from mammalian sources.

Biofilms might help to prevent E. coli drying out outside of its host and being able to take advantage of plant sugars could also aid their survival outside the main host, although overall the plant strains showed lower growth on the usual carbon sources E. coli uses.

An analysis showed that these differences are associated with previously defined phylogentic groups of E. coli showing that different environmental conditions have a selective effect in the evolution of different groups. While some have become more generalised, adapting to life outside the mammalian gut, others have remained specialised for life in this environment, avoiding the associated growth penalty. "While it was known that different environments harboured different E. coli populations, we now have an idea on how and why this happens," said Sacha Lucchini. "Knowledge of the mechanisms involved in plant colonisation by E. coli provides targets for developing strategies aimed at preventing potentially dangerous E. coli strains from colonising vegetables, thus keeping them off our plates."

More information: Environmental Microbiology doi:10.1111/j.1462-2920.2012.02852.x

Related Stories

Recommended for you

Pneumonia vaccine under development provides 'most comprehensive coverage' to date, alleviates antimicrobial concerns

October 20, 2017
In 2004, pneumonia killed more than 2 million children worldwide, according to the World Health Organization. By 2015, the number was less than 1 million.

Newly discovered viral marker could help predict flu severity in infected patients

October 20, 2017
Flu viruses contain defective genetic material that may activate the immune system in infected patients, and new research published in PLOS Pathogens suggests that lower levels of these molecules could increase flu severity.

Migraines may be the brain's way of dealing with oxidative stress

October 19, 2017
A new perspective article highlights a compelling theory about migraine attacks: that they are an integrated mechanism by which the brain protects and repairs itself. Recent insightful findings and potential ways to use them ...

H7N9 influenza is both lethal and transmissible in animal model for flu

October 19, 2017
In 2013, an influenza virus that had never before been detected began circulating among poultry in China. It caused several waves of human infection and in late 2016, the number of people to become sick from the H7N9 virus ...

Flu simulations suggest pandemics more likely in spring, early summer

October 19, 2017
New statistical simulations suggest that Northern Hemisphere flu pandemics are most likely to emerge in late spring or early summer at the tail end of the normal flu season, according to a new study published in PLOS Computational ...

New insights into herpes virus could inform vaccine development

October 18, 2017
A team of scientists has discovered new insights into the mechanisms of Epstein-Barr virus (EBV) infection, as well as two antibodies that block the virus' entry into cells. The findings, published in Proceedings of the National ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.