E. coli adapts to colonize plants

October 30, 2012

New research from the Institute of Food Research has given new clues as to how some E. coli strains, normally at home in mammalian gastrointestinal tracts, have adopted slightly different transmission strategies, with some being better adapted to live on plants than others.

In the light of recent outbreaks of due to contamination of vegetables by dangerous strains of E. coli, this information will be useful to making sure our food remains safe. E. coli is most at home in the warm, moist, nutrient-rich environment found in the of warm-blooded animals. But to disperse from one host to another these bacteria must get out into the world. There is evidence that some E. coli can survive for several weeks outside the host, and even grow in water or soil. But it is on plant matter that E. coli colonisation has become a concern, as although most types of E. coli are harmless, the presence of on fruit and vegetables presents a risk.

To find out more, the IFR team took the first comprehensive look at the differences between the populations of E. coli growing on crop plants and populations in the mammalian gut. Funded by the Biotechnology and Biological Sciences Research Council, they took over 100 isolates from leafy parts of vegetables growing in fields in England. Analysis of these showed that even within the same field the E. coli population is diverse and complex. They then compared these isolates with a standard reference collection of E. coli taken from mammals, including humans, from different continents. Profiling the two groups found a number of significant differences depending on the source of isolation. Compared to the habitat inside the gut, a leaf surface is a hostile environment for . The temperature fluctuates away from the constant 37 °C inside our bodies, and there is a greater risk of drying out.

The researchers found that E. coli populations derived from plants tended to form biofilms more readily. Biofilms are complex structures formed by populations of bacteria coming together to make a thin film over a surface. They are held together by a protective extracellular matrix of proteins and sugars, and the researchers saw that there was also an increase in the production of components of this matrix in E. coli derived from the fields. These strains also used sucrose and other plant-derived sugars more than the E. coli populations derived from mammalian sources.

Biofilms might help to prevent E. coli drying out outside of its host and being able to take advantage of plant sugars could also aid their survival outside the main host, although overall the plant strains showed lower growth on the usual carbon sources E. coli uses.

An analysis showed that these differences are associated with previously defined phylogentic groups of E. coli showing that different environmental conditions have a selective effect in the evolution of different groups. While some have become more generalised, adapting to life outside the mammalian gut, others have remained specialised for life in this environment, avoiding the associated growth penalty. "While it was known that different environments harboured different E. coli populations, we now have an idea on how and why this happens," said Sacha Lucchini. "Knowledge of the mechanisms involved in plant colonisation by E. coli provides targets for developing strategies aimed at preventing potentially dangerous E. coli strains from colonising vegetables, thus keeping them off our plates."

More information: Environmental Microbiology doi:10.1111/j.1462-2920.2012.02852.x

Related Stories

Recommended for you

Snail fever progression linked to nitric oxide production

September 14, 2017
Bilharzia, caused by a parasitic worm found in freshwater called Schistosoma, infects around 200 million people globally and its advance can lead to death, especially in children in developing countries.

Systems analysis points to links between Toxoplasma infection and common brain diseases

September 13, 2017
More than 2 billion people - nearly one out of every three humans on earth, including about 60 million people in the United States - have a lifelong infection with the brain-dwelling parasite Toxoplasma gondii.

Study clears important hurdle toward developing an HIV vaccine

September 13, 2017
An international team of researchers has demonstrated a way of overcoming one of the major stumbling blocks that has prevented the development of a vaccine against HIV: the ability to generate immune cells that stay in circulation ...

As 'flesh-eating' Leishmania come closer, a vaccine against them does, too

September 13, 2017
Parasites that ulcerate the skin, can disfigure the face, and may fatally mutilate its victim's internal organs are creeping closer to the southern edges of the United States.

Promising clinical trial results could give doctors a new tool against drug-resistant strains of malaria parasite

September 13, 2017
Tulane University researchers have developed a new drug that is effective against non-severe cases of malaria, according to results from an FDA-supervised clinical trial published in the latest issue of The Lancet Infectious ...

Semen harbors wide range of viruses

September 13, 2017
(HealthDay)—Human semen provides a potential hiding place and breeding ground for a host of dangerous viruses, a new evidence review reports.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.