Study finds diabetes raises levels of proteins linked to Alzheimer's features

October 26, 2012
Salk study finds diabetes raises levels of proteins linked to Alzheimer's features
This microscope image shows blood vessels in the brain of mouse (green) surrounded by amyloid beta peptides (red), a component of the amyloid plaques found in the brains of Alzheimer's patients. Salk researchers found that these peptides accumulate in the brains of diabetic and aged mice, a finding that may help explain the connection between diabetes and Alzheimer's. Credit: Image: Courtesy of the Salk Institute for Biological Studies

Growing evidence suggests that there may be a link between diabetes and Alzheimer's disease, but the physiological mechanisms by which diabetes impacts brain function and cognition are not fully understood. In a new study published in Aging Cell, researchers at the Salk Institute for Biological Studies show, for the first time, that diabetes enhances the development of aging features that may underlie early pathological events in Alzheimer's.

Specifically, the Salk team found increases in two hallmarks of Alzheimer's-accumulations of amyloid beta (Abeta) and -in the brains of , especially in cells surrounding . Abeta, the misfolded peptide that is thought in part to cause Alzheimer's disease, aggregated inside astrocytes, star-shaped that, upon interaction with Abeta, release inflammatory molecules that can destroy neurons. Previously, this had not been shown in mouse models of (T1D).

"Our study supports and extends the links between , aging and Alzheimer's," says senior author Pamela Maher, a senior staff scientist in Salk's Laboratory of Cellular Neurobiology. "We show that type 1 diabetes increases vascular-associated amyloid beta buildup in the brain and causes accelerated brain aging."

The findings suggest that the neurovascular system may be a good candidate for new therapeutic targets to treat Alzheimer's in the early stages of the disease.

Alzheimer's and diabetes are two diseases that are increasing at an alarming rate within the U.S. population. Alzheimer's affects one in 10 Americans over 65 years of age and nearly 50 percent of those over 85. Similarly, more than 8 percent of Americans (approximately 26 million people) have diabetes, with the vast majority of those individuals being over 60.

Maher says her team is uncertain of the precise mechanism behind the increase in Abeta and tau in the , but their data suggest that changes in astrocytes, as well as other pro-inflammatory processes and the bonding of proteins with sugar molecules (called non-enzymatic glycation), may contribute.

"Astrocytes play a key role in maintaining nerve cells in the brain," says lead study author Antonio Currais, a postdoctoral researcher at Salk. "Both chronic peripheral inflammation and increased non-enzymatic glycation are associated with diabetes, and these changes may act on the brain to alter astrocyte function, which eventually leads to Alzheimer's-like changes."

All nerve cells are closely connected to blood vessels, as they need nutrients—— especially glucose (sugar) and oxygen—— provided by the blood in order to function. Astrocytes facilitate the transfer of nutrients between blood vessels and cells. The buildup of Abeta at sites where interact with blood vessels suggest that this could impair the transfer of nutrients. The type of Abeta localization seen in Maher's mouse models is also found in human Alzheimer's patients

To examine the contributions of diabetes to Alzheimer's-related pathology in the aged brain, the Salk researchers induced T1D in two sets of mouse models. One set, known as SAMP8 mice, undergo accelerated aging and develop early deterioration in learning and memory, as well as a number of brain alterations similar to those found in Alzheimer's. The other set, SAMR1 mice, which in this study came from the same gene pool as the SAMP8 mice, age normally.

Using these mice, Maher and her colleagues addressed how T1D interacts with age to contribute to Alzheimer's-related pathology. They showed that T1D elicits a wide range of pathological changes in the brains of both strains of mice, which are exacerbated by premature aging.

The Salk study is the first to show that these modifications are similar to those seen in old nondiabetic SAMP8 mice and to identify unique pathological changes, such as increases in markers for inflammation, in aged, T1D SAMP8 mice. Unlike most mouse studies of Alzheimer's, Maher's mice were not engineered to produce high levels of human Abeta or tau,so all of their observations came from naturally occurringAbeta and tau.

Explore further: Researchers identify how a gene linked to both Alzheimer's disease and type 2 diabetes works

Related Stories

Researchers identify how a gene linked to both Alzheimer's disease and type 2 diabetes works

July 18, 2011
Researchers at Mount Sinai School of Medicine have identified how a gene for a protein that can cause Type 2 diabetes, also possibly kills nerve cells in the brain, thereby contributing to Alzheimer's disease.

Poor recycling of BACE1 enzyme could promote Alzheimer's disease

November 21, 2011
Sluggish recycling of a protein-slicing enzyme could promote Alzheimer's disease, according to a study published online on November 21 in The Journal of Cell Biology.

Recommended for you

Canola oil linked to worsened memory and learning ability in Alzheimer's

December 7, 2017
Canola oil is one of the most widely consumed vegetable oils in the world, yet surprisingly little is known about its effects on health. Now, a new study published online December 7 in the journal Scientific Reports by researchers ...

Genetics study suggests that education reduces risk of Alzheimer's disease

December 7, 2017
The theory that education protects against Alzheimer's disease has been given further weight by new research from the University of Cambridge, funded by the European Union. The study is published today in the BMJ.

Healthy mitochondria could stop Alzheimer's

December 6, 2017
Alzheimer's disease is the most common form of dementia and neurodegeneration worldwide. A major hallmark of the disease is the accumulation of toxic plaques in the brain, formed by the abnormal aggregation of a protein called ...

Alzheimer's damage in mice reduced with compound that targets APOE gene

December 6, 2017
People who carry the APOE4 genetic variant face a substantial risk for developing Alzheimer's disease.

Lithium in water associated with slower rate of Alzheimer's disease deaths

December 5, 2017
Rates of diabetes and obesity, which are important risk factors for Alzheimer's disease, also decrease if there is a particular amount of lithium in the water, says the study, published recently in the Journal of Alzheimer's ...

Hyperbaric oxygen therapy may alleviate symptoms of Alzheimer's Disease

December 5, 2017
A new Tel Aviv University study reveals that hyperbaric oxygen treatments may ameliorate symptoms experienced by patients with Alzheimer's disease.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.