Discovery of new type of RNA could have implications for some congenital disorders

October 29, 2012 by Lisa Catanese

State funding of stem cell research at the UConn Health Center has led one research team to the discovery of a new type of RNA that could one day result in the successful treatment of devastating congenital disorders such as Prader-Willi syndrome.

Gordon Carmichael, professor in the Department of Genetics and Developmental Biology, together with his former Ph.D. student Ling-Ling Chen, who is now a professor, along with her students in Shanghai, used to look through the entire to search for new molecules. "We found RNAs that no one had ever found before," Carmichael says. "We found it using a unique mechanism that we had discovered. This RNA was missed because it didn't have the typical identifiers of other types of RNA."

The newly discovered sno-IncRNAs, described in an article published in the Oct. 26, 2012 issue of Molecular Cell, is located in a region of the human genome that is not expressed in patients with Prader-Willi syndrome (PWS) and Angelman syndrome (AS). "Every Prader-Willi patient in the world fails to express these RNAs," Carmichael explains. "We went on with our study and found out how we think they are working."

In a lab virtually next door to Carmichael's are researchers Marc Lalande and Stormy Chamberlain, whose team used state stem cell funds to create of PWS and AS. "We just stumbled on this discovery," Carmichael says of his work, "and it just so happens that two of the world's experts on these diseases are flanking us. It's now leading to collaborations between our labs and major new molecular insight."

"The goal of stem cell research is to improve , and at UConn we have a large portfolio of stem cell research projects," says Lalande, professor and chairman of Genetics and Developmental Biology. "Our labs have generated stem cells from the skin of Prader-Willi and Angelman patients. The new class of RNA discovered by Gordon Carmichael has significant importance in these two syndromes. So two very separate projects funded by the state initially, and now federally, have crossed paths and intersected to advance our knowledge of a complex human genetic disorder. That's remarkable."

The state committed to a 10-year, $100 million investment in stem cell research starting in 2006. The early results from that research jump-started funding from federal grants and other sources. The goal of the state's investment is to move Connecticut toward becoming a national and world leader in . This in turn could have huge economic benefits, such as start-up companies, as scientists learn how to repair or replace damaged or missing genetic to treat a wide variety of diseases.

Carmichael, whose research initially had focused on mouse viruses, moved to stem cells when he received one of the first state grants. "Stem cell grants have changed my world," he says. "This type of funding has changed how I do science. Now my expertise is in studying the underlying mechanism of disease." His research has resulted in more than a dozen major papers published worldwide, and grants flowing into the Health Center at a time of stiff competition for funds.

Prader-Willi syndrome is a congenital disease caused by missing paternal genes on part of chromosome 15. These genetic changes occur randomly; patients usually do not have a family history of the condition. Signs of PWS at birth include poor weight gain and failure to grow and thrive in early infancy. As PWS children grow, this reverses itself. In addition to having intellectual and behavioral disabilities, they develop an intense craving for food, often resulting in morbid obesity. These symptoms can in turn lead to diabetes and other serious health problems.

Angelman syndrome is a disorder that involves the same part of chromosome 15 as PWS and results from the lack of a functional copy of the UBE3A gene inherited from the mother. Infants often have feeding problems from birth and developmental delays by 12 months. Seizures usually begin between ages 2 and 3. Children will experience impaired speech, motor difficulties, hyperactivity, and balance and sleep disorders that continue into adulthood.

Research into these related disorders is encouraged and funded by the Foundation for Prader-Willi Syndrome, says Theresa Strong, chairwoman of the Foundation's scientific advisory board. "Because Prader-Willi is a rare disorder, patient advocacy groups are important in promoting research. Mouse models do not recapitulate disease very well. Stem cells allow the scientific community to study this disease in a way that they have never been able to study it before."

As the parent of an 18-year-old son with PWS, Strong says she yearns for an effective treatment, of which there currently are few. Most families live with locks on their cabinets and refrigerator. The chronic hunger of PWS patients lasts a lifetime.

"Failure to thrive when children are very young is replaced by an insatiable appetite," she says. "They are constantly hungry but don't need that many calories. It's a nightmare scenario where you have to restrict their environment, because food is all around us. They can't be independent because they can't control their appetite. It's a source of frustration all around."

Research into PWS could lead to life-changing results, says Strong, who is a scientist herself. "If not for the hunger issue, there's a lot that many of these kids could do. We could make a significant impact in their lives and their ability to contribute to society."

Explore further: Oxytocin promises hope in Prader-Willi syndrome

Related Stories

Oxytocin promises hope in Prader-Willi syndrome

June 24, 2011
Prader-Willi syndrome is a rare genetic disorder which affects one child in 25,000. Children born with this syndrome have a range of complex neurological and developmental problems which continue into adult life. These can ...

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.