New type of drug leads to hope against resistant ovarian cancer

October 3, 2012

Scientists at USC have discovered a new type of drug for the treatment of ovarian cancer that works in a way that should not only decrease the number of doses that patients need to take, but also may make it effective for patients whose cancer has become drug-resistant.

The , which so far has been tested in the lab on and on mice tumors, was unveiled last month in the (PNAS).

"We need a new generation of drugs," said Shili Xu, a USC graduate student and lead author of the PNAS paper. "We need to overcome the issue."

The drug is a member of a new class of abbreviated as PACMA that was discovered by testing roughly 10,000 on cancer cells in the lab of Nouri Neamati, professor of pharmacology and pharmaceutical sciences at the USC School of Pharmacy, and a co-corresponding author of the paper.

These initial findings led to a collaboration with Nicos Petasis, co-corresponding author of the paper and professor of chemistry at the USC Dornsife College of Letters, Arts and Sciences, with appointments at the School of Pharmacy and the USC Norris Comprehensive Cancer Center of the Keck School of Medicine of USC. This joint effort led to a study of PACMA compounds that was reported last year in the .

In order to investigate and optimize the of PACMAs, co-author Alexey Butkevich, a graduate student in the Petasis lab, synthesized more than 80 newly designed compounds. One of these, called PACMA31, was eventually found to be very toxic to ovarian cancer cells and was shown to be a potentially effective drug.

In the PNAS paper, Xu and his co-authors reported that PACMA31 is a potent and selective inhibitor of a protein called Protein Disulfide Isomerase (PDI) that is highly expressed in ovarian cancer.

PACMA31 can be taken orally and accumulates in cancer cells, which means that it is less likely to cause harmful side effects in normal tissues. It is also what is known as an "irreversible" drug, meaning that it permanently latches on to its target, PDI, and refuses to wear off until the protein is degraded.

That irreversibility may result in prolonged duration of drug action that could translate into giving the patients lower doses of drugs.

"We are exploring combination studies in order to find synergy between our drug and first-line therapy for ovarian cancer," Neamati said.

Currently, there are two major types of drugs in the first-line treatment of ovarian cancer: paclitaxel, which hinders cancer cell division by inhibiting the disassembly of microtubules; and carboplatin, which binds to and causes crosslinking of DNA that results in the death of cancer cells.

PACMA31 attacks in yet a different way, targeting PDI and thus interrupting the folding process during which proteins assume the shapes that allow them to function properly. Accumulation of misfolded proteins in a cell causes cellular stress and eventually cancer cell death.

Because PACMA31's strategy is different than that of current anticancer drugs, it has the potential to help patients who do not respond to paclitaxel or cisplatin.

"When the patient has no other choice, we could potentially treat them with our drug," Neamati said.

Other co-authors of the PNAS paper included Roppei Yamada, Yu Zhou, Bikash Debnath and Professors Roger Duncan and Ebrahim Zandi. Additional contributors to the PACMA project and co-authors to the team's first paper included Xuefei Cao, Melissa Millard, Srinivas Odde, Nick Mordwinkin, Rambabu Gundla and Professor Stan Louie.

"The discovery of this new drug and its novel mechanism of action is a great example of the power of interdisciplinary collaborations between chemists, biologists, pharmacologists and other biomedical researchers," Petasis said.

The drug will still require additional testing, but so far it appears to be nontoxic and effective at halting tumor growth. It may also have potential for treating other types of cancer, Neamati noted.

"Obviously, we think that it will go beyond ," he said.

Explore further: Researchers investigate drug resistant ovarian cancer to improve clinical treatment

Related Stories

Researchers investigate drug resistant ovarian cancer to improve clinical treatment

August 9, 2012
(Medical Xpress) -- A new study by TCD researchers investigates drug-resistant ovarian cancer cells. The findings which have been recently published in the international publication, PLoS One will increase understanding of ...

Researchers find drug duo kills chemotherapy-resistant ovarian cancer cells

December 7, 2011
The use of two drugs never tried in combination before in ovarian cancer resulted in a 70 percent destruction of cancer cells already resistant to commonly used chemotherapy agents, say researchers at Mayo Clinic in Florida. ...

Motor protein may offer promise in ovarian cancer treatment

April 26, 2011
(Medical Xpress) -- A motor regulatory protein can block human ovarian tumor growth, leading to eventual cancer cell death and possible new therapies to treat the disease, according to Penn State College of Medicine researchers.

Recommended for you

Researchers discover a new target for 'triple-negative' breast cancer

November 20, 2017
So-called "triple-negative" breast cancer is a particularly aggressive and difficult-to-treat form. It accounts for only about 10 percent of breast cancer cases, but is responsible for about 25 percent of breast cancer fatalities.

Clinical trial suggests new cell therapy for relapsed leukemia patients

November 20, 2017
A significant proportion of children and young adults with treatment-resistant B-cell leukemia who participated in a small study achieved remission with the help of a new form of gene therapy, according to researchers at ...

Study reveals new mechanism used by cancer cells to disarm attacking immune cells

November 20, 2017
A new study by researchers at The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute (OSUCCC - James) identifies a substance released by pancreatic cancer cells that protects ...

Cell-weighing method could help doctors choose cancer drugs

November 20, 2017
Doctors have many drugs available to treat multiple myeloma, a type of blood cancer. However, there is no way to predict, by genetic markers or other means, how a patient will respond to a particular drug. This can lead to ...

Lung cancer triggers pulmonary hypertension

November 17, 2017
Shortness of breath and respiratory distress often increase the suffering of advanced-stage lung cancer patients. These symptoms can be triggered by pulmonary hypertension, as scientists at the Max Planck Institute for Heart ...

Researchers discover an Achilles heel in a lethal leukemia

November 16, 2017
Researchers have discovered how a linkage between two proteins in acute myeloid leukemia enables cancer cells to resist chemotherapy and showed that disrupting the linkage could render the cells vulnerable to treatment. St. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.