New human neurons from adult cells right there in the brain

October 4, 2012

Researchers have discovered a way to generate new human neurons from another type of adult cell found in our brains. The discovery, reported in the October 5th issue of Cell Stem Cell, a Cell Press publication, is one step toward cell-based therapies for the treatment of neurodegenerative diseases, such as Alzheimer's and Parkinson's.

"This work aims at converting cells that are present throughout the brain but themselves are not nerve cells into neurons," said Benedikt Berninger, now at the Johannes Gutenberg University Mainz. "The ultimate goal we have in mind is that this may one day enable us to induce such conversion within the brain itself and thus provide a novel strategy for repairing the injured or diseased brain."

The cells that made the leap from one identity to another are known as pericytes. Those cells, found in close association with the blood vessels, are important for keeping the blood-brain barrier intact and have been shown to participate in in other parts of the body.

The video will load shortly
This is a direct observation of neuronal reprogramming of PDGFR-sorted pericyte-derived cells from the adult human brain by continuous live imaging in culture. Note the change in morphology of a cell coexpressing Sox2 and Mash1 (blue arrow) during reprogramming. Postimaging immunocytochemistry for III-tubulin (white) confirms the neuronal identity of the reprogrammed cell at the end of live imaging. Credit: Cell Stem Cell, a Cell Press Journal, Karow et al.

"Now, we reason, if we could target these cells and entice them to make , we could take advantage of this injury response," Berninger says.

Further testing showed that those newly converted neurons could produce and reach out to other neurons, providing evidence that the converted cells could integrate into neural networks.

"While much needs to be learnt about adapting a direct neuronal reprogramming strategy to meaningful repair in vivo, our data provide strong support for the notion that neuronal reprogramming of cells of pericytic origin within the damaged brain may become a viable approach to replace degenerated neurons," the researchers write.

Explore further: Astrocytes control the generation of new neurons from neural stem cells

More information: Karow et al.: "Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells." DOI: 10.1016/j.stem.2012.07.007

Related Stories

Astrocytes control the generation of new neurons from neural stem cells

August 24, 2012
Astrocytes are cells that have many functions in the central nervous system, such as the control of neuronal synapses, blood flow, or the brain's response to neurotrauma or stroke.

Naturally produced protein could boost brain repair

January 10, 2012
(Medical Xpress) -- Scientists from the Medical Research Council (MRC) have discovered that a protein produced by blood vessels in the brain could be used to help the brain repair itself after injury or disease.

Recommended for you

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

Bird songs provide insight into how developing brain forms memories

July 24, 2017
Researchers at the University of Chicago have demonstrated, for the first time, that a key protein complex in the brain is linked to the ability of young animals to learn behavioral patterns from adults.

Brain stimulation may improve cognitive performance in people with schizophrenia

July 24, 2017
Brain stimulation could be used to treat cognitive deficits frequently associated with schizophrenia, according to a new study from King's College London.

Scientists capture first image of major brain receptor in action

July 24, 2017
Columbia University Medical Center (CUMC) researchers have captured the first three-dimensional snapshots of the AMPA-subtype glutamate receptor in action. The receptor, which regulates most electrical signaling in the brain, ...

Research identifies new brain death pathway in Alzheimer's disease

July 24, 2017
Alzheimer's disease tragically ravages the brains, memories and ultimately, personalities of its victims. Now affecting 5 million Americans, Alzheimer's disease is the sixth leading cause of death in the U.S., and a cure ...

Illuminating neural pathways in the living brain

July 24, 2017
Using light alone, scientists from the Max Planck Institute of Neurobiology in Martinsried are now able to reveal pairs or chains of functionally connected neurons under the microscope. The new optogenetic method, named Optobow, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.