Study identifies pathology of Huntington's disease

October 17, 2012

A study led by researchers at Boston University School of Medicine (BUSM) provides novel insight into the impact that Huntington's disease has on the brain. The findings, published online in Neurology, pinpoint areas of the brain most affected by the disease and opens the door to examine why some people experience milder forms of the disease than others.

Richard Myers, PhD, professor of neurology at BUSM, is the study's lead/corresponding author. This study, which is the largest to date of brains specific to Huntington's disease, is the product of nearly 30 years of collaboration between the lead investigators at BUSM and their colleagues at the McLean Resource Center, Massachusetts General Hospital and Columbia University.

Huntington's disease (HD) is an inherited and fatal that typically is diagnosed when a person is approximately 40 years old. The gene responsible for the disease was identified in 1993, but the reason why certain neurons or die remains unknown.

The investigators examined 664 autopsy samples with HD that were donated to the McLean Brain Bank. They evaluated and scored more than 50 areas of the brain for the effects of HD on neurons and other brain cell types. This information was combined with a genetic study to characterize variations in the Huntington gene. They also gathered the clinical neurological information on the patients' age when HD symptoms presented and how long the patient survived with the disease.

Based on this analysis, the investigators discovered that HD primarily damages the brain in two areas. The , which is located deep within the brain and is involved in motor control and involuntary movement, was the area most severely impacted by HD. The outer cortical regions, which are involved in cognitive function and thought processing, also showed damage from HD, but it was less severe than in the striatum.

The investigators identified extraordinary variation in the extent of cell death in different brain regions. For example, some individuals had extremely severe outer cortical degeneration while others appeared virtually normal. Also, the extent of involvement for these two regions was remarkably unrelated, where some people demonstrated heavy involvement in the striatum but very little involvement in the cortex, and vice versa.

"There are tremendous differences in how people with Huntington's disease are affected," Myers said. "Some people with the disease have more difficulty with motor control than with their cognitive function while others suffer more from cognitive disability than issues."

When studying these differences, the investigators noted that the cell death in the striatum is heavily driven by the effects of variations in the Huntington gene itself, while effects on the cortex were minimally affected by the HD gene and are thus likely to be a consequence of other unidentified causes. Importantly, the study showed that some people with HD experienced remarkably less neuronal cell death than others.

"While there is just one genetic defect that causes Huntington's disease, the disease affects different parts of the brain in very different ways in different people," said Myers. "For the first time, we can measure these differences with a very fine level of detail and hopefully identify what is preventing brain in some individuals with HD."

The investigators have initiated extensive studies into what genes and other factors are associated with the protection of neurons in HD, and they hope these protective factors will point to possible novel treatments.

Explore further: Reach2HD, a Phase II study in Huntington's disease, launched

Related Stories

Reach2HD, a Phase II study in Huntington's disease, launched

June 7, 2012
The Huntington Study Group (HSG), under the leadership of Ray Dorsey, M.D. with Johns Hopkins Medical and Diana Rosas, M.D. with Massachusetts General Hospital, is conducting a clinical trial in Huntington's disease (HD) ...

Striatal brain volume predicts Huntington disease onset

April 26, 2012
Huntington disease (HD) is an inherited neurodegenerative disorder caused by a defect on chromosome four where, within the Huntingtin gene, a CAG repeat occurs too many times. Most individuals begin experiencing symptoms ...

Dantrolene protects neurons from Huntington's disease

November 25, 2011
Huntington's disease (HD) is characterized by ongoing destruction of specific neurons within the brain. It affects a person's ability to walk, talk, and think - leading to involuntary movement and loss of muscle co-ordination. ...

Recommended for you

Now you like it, now you don't: Brain stimulation can change how much we enjoy and value music

November 20, 2017
Enjoyment of music is considered a subjective experience; what one person finds gratifying, another may find irritating. Music theorists have long emphasized that although musical taste is relative, our enjoyment of music, ...

Deletion of a stem cell factor promotes TBI recovery in mice

November 20, 2017
UT Southwestern molecular biologists today report the unexpected finding that selectively deleting a stem cell transcription factor in adult mice promotes recovery after traumatic brain injury (TBI).

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

MRI uncovers brain abnormalities in people with depression and anxiety

November 20, 2017
Researchers using MRI have discovered a common pattern of structural abnormalities in the brains of people with depression and social anxiety, according to a study presented being next week at the annual meeting of the Radiological ...

Neuroscience research provides evidence the brain is strobing, not constant

November 17, 2017
It's not just our eyes that play tricks on us, but our ears. That's the finding of a landmark Australian-Italian collaboration that provides new evidence that oscillations, or 'strobes', are a general feature of human perception.

Brain activity buffers against worsening anxiety

November 17, 2017
Boosting activity in brain areas related to thinking and problem-solving may also buffer against worsening anxiety, suggests a new study by Duke University researchers.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.