Unlocking the secrets of DNA repair

October 31, 2012
The figure shows a zoomed in structure (derived by X-ray crystallography) of a complex between Atl1 and DNA containing 2,6-diaminopurine, an analogue that has the same electrostatic charge characteristics as O6-alkylguanine

Scientists from the University of Sheffield have unlocked one of the secrets to DNA repair—helping doctors identify DNA base damage and a patient's susceptibility to certain types of cancer.

Groundbreaking research led by Dr David Williams from the University of Sheffield's Department of Chemistry and an of expert researchers has discovered how some proteins recognise damaged bases within DNA which, if untreated, could lead to cancer.

Dr Williams said: "Proteins carry out all the day-to-day processes needed for survival. If the DNA bases become damaged the associated protein may not function or in some cases, too much of a certain protein can be produced – which might lead to cancer.

"Everyday humans are exposed to chemicals known as alkylating agents which may be derived from environmental sources or from dietary sources such as a high intake of red or or exposure to . can chemically modify the bases in DNA which can, in turn, lead to non- being produced or indeed cancer.

"Fortunately humans have a large number of different DNA repair proteins whose task it is to find and repair damaged bases in DNA. However damage, although highly problematic, is rare and often only one or two bases per million or even fewer. The task of locating a damaged base is similar to finding a needle in a haystack."

DNA contains all the information needed for life within the sequence of its four bases; adenine, cytosine, guanine and thymine. Specific sequences of bases in DNA known as genes instruct what proteins are made and furthermore genes may be switched on or off to control how much of each protein is made.

The pioneering research, published in the journal: Proceeding of the National Academy of Sciences (PNAS), was conducted by scientists from the University of Sheffield, University of Manchester and the Scripps Research Institute in California and focuses on damage to the guanine base to form O6-alkylguanine, a type of damage that is particularly prevalent in colon or bowel cancer.

"In humans this is repaired by alkyltransferase proteins that simply reverse the damage of these modified bases, converting them back to guanine," said Dr Williams.

"We have uncovered an exquisite mechanism whereby a positively charged side chain of the amino acid arginine found in the Alt1 protein is used to check the electronic charge distribution across the DNA base, which is altered by alkylation damage.

"This method of recognition, we believe, may also be used by many other DNA repair proteins to recognise damaged bases within DNA. A further exciting discovery we have made is to show that the alkyltransferase-like Alt1 can detect all known types of O6-alkylguanine modification.

"Consequently, Alt1 has potential for use in identifying and quantifying levels of certain O6- alkylguanines in human tissue biopsies. This would be informative to clinicians about individual susceptibility to certain cancers, particularly colorectal."

Explore further: Scientists identify seventh and eighth bases of DNA

Related Stories

Scientists identify seventh and eighth bases of DNA

July 21, 2011
For decades, scientists have known that DNA consists of four basic units -- adenine, guanine, thymine and cytosine. Those four bases have been taught in science textbooks and have formed the basis of the growing knowledge ...

Oxidative DNA damage repair

December 27, 2011
Oxidative stress damages DNA. Researchers in the Vetsuisse Faculty have now decoded the mechanism that repairs DNA damaged in this way. This repair mechanism could lead to less invasive approaches in cancer therapy and contribute ...

Recommended for you

Study may explain failure of retinoic acid trials against breast cancer

July 25, 2017
Estrogen-positive breast cancers are often treated with anti-estrogen therapies. But about half of these cancers contain a subpopulation of cells marked by the protein cytokeratin 5 (CK5), which resists treatment—and breast ...

Physical activity could combat fatigue, cognitive decline in cancer survivors

July 25, 2017
A new study indicates that cancer patients and survivors have a ready weapon against fatigue and "chemo brain": a brisk walk.

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.