Stem cells improve visual function in blind mice

October 1, 2012 by Susan Conova, Columbia University Medical Center
Central vision is lost in age-related macular degeneration after cells in the retina deteriorate. New research by Stephen Tsang suggests special adult stem cells could restore sight or prevent vision loss.

An experimental treatment for blindness, developed from a patient's skin cells, improved the vision of blind mice in a study conducted by Columbia ophthalmologists and stem cell researchers.

The findings suggest that induced pluripotent stem (iPS) cells – which are derived from adult but have embryonic properties – could soon be used to restore vision in people with and other diseases that affect the eye's retina.

"With eye diseases, I think we're getting close to a scenario where a patient's own are used to replace destroyed by disease or degeneration," says the study's principal investigator, Stephen Tsang, MD, PhD, associate professor of and & cell biology. "It's often said that iPS transplantation will be important in the practice of medicine in some distant future, but our paper suggests the future is almost here."

The advent of human iPS cells in 2007 was greeted with excitement from scientists who hailed the development as a way to avoid the ethical complications of embryonic and create patient-specific stem cells. Like embryonic stem cells, iPS cells can develop into any type of cell. Thousands of different iPS cell lines from patients and healthy donors have been created in the last few years, but they are almost always used in research or drug screening.

No iPS cells have been transplanted into people, but many say the eye is the ideal testing ground for iPS therapies.

"The eye is a transparent and accessible part of the central nervous system, and that's a big advantage. We can put cells into the eye and monitor them every day with routine non-invasive clinical exams," Tsang says. "And in the event of serious complications, removing the eye is not a life-threatening event."

In Tsang's new preclinical iPS study, human iPS cells – derived from the skin cells of a 53-year-old donor—were first transformed with a cocktail of growth factors into cells in the retina that lie underneath the eye's light-sensing cells.

The primary job of the retina cells is to nourish the light-sensing cells and protect the fragile cells from excess light, heat, and cellular debris. If the retina cells die – which happens in macular degeneration and retinitis pigmentosa – the photoreceptor cells degenerate and the patient loses vision. Macular degeneration is a leading cause of vision loss in the elderly, and it is estimated that 30 percent of people will have some form of macular degeneration by age 75. Macular degeneration currently affects 7 million Americans and its incidence is expected to double by 2020.

In their study, the researchers injected the iPS-derived retina cells into the right eyes of 34 mice that had a genetic mutation that caused their retina cells to degenerate.

In many animals, the human cells assimilated into mouse retina without disruption and functioned as normal retina cells well into the animals' old age. Control mice that got injections of saline or inactive cells showed no improvement in retina tests.

"Our findings provide the first evidence of life-long neuronal recovery in a preclinical model of retinal degeneration, using stem cell transplant, with vision improvement persisting through the lifespan," Tsang says. "And importantly, we saw no tumors in any of the mice, which should allay one of the biggest fears people have about stem cell transplants: that they will generate tumors."

Tsang hopes to begin a clinical trial for macular degeneration patients in the next three years, after more preclinical testing in animal models.

Already a similar trial – testing retina cells derived from embryonic stem cells – has seen encouraging preliminary results. A paper from this study, published earlier this year, reported that the stem cells are safe and have potential to improve the vision of two patients with macular degeneration.

"These results are encouraging, but iPS cells could be a more attractive option than embryonic stem cells," Tsang says, "because patients may not need drugs to prevent rejection of the transplanted ."

Regardless of which cell works better, the prospect of stem cell transplants may mean many people with macular degeneration may never lose their vision.

"We have a good idea which patients will eventually lose their vision. In the early stages of macular degeneration we can tell by looking in the eye, and new genetic tests can now predict vision loss with 70 percent accuracy even before those signs emerge," Tsang says. "If the therapy is safe, we could intervene very early to prevent much vision loss."

The study was published online in advance of print in the journal Molecular Medicine.

Explore further: Sections of retinas regenerated and visual function increased with stem cells from skin

Related Stories

Sections of retinas regenerated and visual function increased with stem cells from skin

May 16, 2011
Scientists from Schepens Eye Research Institute are the first to regenerate large areas of damaged retinas and improve visual function using IPS cells (induced pluripotent stem cells) derived from skin. The results of their ...

Recommended for you

Researchers identify blood biomarkers that may help diagnose, confirm concussions

April 20, 2018
Researchers from the University of California, Irvine, Georgetown University and the University of Rochester have found that specific small molecules in blood plasma may be useful in determining whether someone has sustained ...

Stem-cell technology aids 3-D printed cartilage repair

April 20, 2018
Novel stem-cell technology developed at Swinburne will be used to grow the massive number of stem cells required for a new hand-held 3-D printer that will enable surgeons to create patient-specific bone and cartilage.

DOR protein deficiency favors the development of obesity

April 20, 2018
Obesity is a world health problem. Excessive accumulation of fat tissue (adipose tissue) increases the risk of cardiovascular disease, hypertension, diabetes and some types of cancer. However, some obese individuals are less ...

Defect in debilitating neurodegenerative disease reversed in mouse nerves

April 19, 2018
Scientists have developed a new drug compound that shows promise as a future treatment for Charcot-Marie-Tooth disease, an inherited, often painful neurodegenerative condition that affects nerves in the hands, arms, feet ...

Enduring cold temperatures alters fat cell epigenetics

April 19, 2018
A new study in fat cells has revealed a molecular mechanism that controls how lifestyle choices and the external environment affect gene expression. This mechanism includes potential targets for next-generation drug discovery ...

Molecule that dilates blood vessels hints at new way to treat heart disease

April 19, 2018
Americans die of heart or cardiovascular disease at an alarming rate. In fact, heart attacks, strokes and related diseases will kill an estimated 610,000 Americans this year alone. Some medications help, but to better tackle ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Sonhouse
not rated yet Oct 01, 2012
Do you think it could work for all three of them?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.