Researchers uncover new target for cancer research

October 24, 2012, University of Colorado at Boulder

In a new paper released today in Nature, BioFrontiers Institute scientists at the University of Colorado Boulder, Tom Cech and Leslie Leinwand, detailed a new target for anti-cancer drug development that is sitting at the ends of our DNA.

Researchers in the two scientists' laboratories collaborated to find a patch of amino acids that, if blocked by a drug docked onto the chromosome end at this location, may prevent from reproducing. The at this site are called the "TEL patch" and once modified, the end of the chromosome is unable to recruit the , which is necessary for growth of many cancerous cells.

"This is an exciting scientific discovery that gives us a new way of looking at the problem of cancer," Cech said. "What is amazing is that changing a single amino acid in the TEL patch stops the growth of telomeres. We are a long way from a drug solution for cancer, but this discovery gives us a different, and hopefully more effective, target."

Cech is the director of the BioFrontiers Institute, a Howard Hughes Medical Investigator and winner of the 1989 Nobel Prize in chemistry.

Co-authors on the study include postdoctoral fellows Jayakrishnan Nandakumar and Ina Weidenfeld; University of Colorado undergraduate student Caitlin Bell; and Howard Hughes Medical Institute Senior Scientist Arthur Zaug.

Telomeres have been studied since the 1970s for their role in cancer. They are constructed of repetitive nucleotide sequences that sit at the ends of our chromosomes like the ribbon tails on a bow. This extra material protects the ends of the chromosomes from deteriorating, or fusing with neighboring chromosome ends. Telomeres are consumed during cell division and, over time, will become shorter and provide less cover for the chromosomes they are protecting. An enzyme called telomerase replenishes throughout their lifecycles.

Telomerase is the enzyme that keeps cells young. From to , telomerase helps cells continue to live and multiply. Too little telomerase produces diseases of bone marrow, lungs and skin. Too much telomerase results in cells that over proliferate and may become "immortal." As these immortal cells continue to divide and replenish, they build cancerous tumors. Scientists estimate that telomerase activation is a contributor in up to 90 percent of human cancers.

To date, development of cancer therapies has focused on limiting the enzymatic action of telomerase to slow the growth of cancerous cells. With their latest discovery, Cech and Leinwand envision a cancer drug that would lock into the TEL patch at to keep telomerase from binding there. This approach of inhibiting the docking of telomerase may be the elegant solution to the complex problem of cancerous cells. Cech, a biochemist, and Leinwand, a biologist, joined forces to work on their latest solution.

"This work was really made possible by the fact that our labs are so close," Leinwand said. "My lab was able to provide the cell biology and understanding of genetics, and Tom's lab allowed us to explore the biochemistry. We have a unique situation at BioFrontiers where labs and people comingle to make discoveries just like this."

Explore further: Research reveals how cancer-driving enzyme works

Related Stories

Research reveals how cancer-driving enzyme works

May 6, 2011
Cancer researchers at UT Southwestern Medical Center are helping unlock the cellular-level function of the telomerase enzyme, which is linked to the disease's growth.

Scientists capture single cancer molecules at work

December 8, 2011
Researchers have revealed how a molecule called telomerase contributes to the control of the integrity of our genetic code, and when it is involved in the deregulation of the code, its important role in the development of ...

Study identifies a key molecular switch for telomere extension by telomerase

November 23, 2011
Researchers at the University of Illinois at Chicago College of Medicine describe for the first time a key target of DNA damage checkpoint enzymes that must be chemically modified to enable stable maintenance of chromosome ...

New target for cancer therapy identified

September 21, 2006
A new target for cancer therapy has been identified by Monash University scientists investigating the cell signalling pathways that turn on a gene involved in cancer development.

Researchers unmask proteins in telomerase, a substance that enables cancer

March 20, 2008
One of the more intriguing workhorses of the cell, a protein conglomerate called telomerase, has in its short history been implicated in some critical areas of medicine including cancer, aging and keeping stem cells healthy. ...

Lab identifies elusive telomere RNA subunit in single cell model

December 27, 2007
The Stowers Institute’s Baumann Lab has identified the long-sought telomerase RNA gene in a single-cell research model. Their findings have been posted to the Web site of the journal Nature Structural & Molecular Biology ...

Recommended for you

In zebrafish, a way to find new cancer therapies, targeting tumor modulators

September 21, 2018
The lab of Leonard Zon, MD, at Boston Children's Hospital has long been interested in making blood stem cells in quantity for therapeutic purposes. Looking for a way to test for their presence in zebrafish, their go-to research ...

What can salad dressing tell us about cancer? Think oil and vinegar

September 20, 2018
Researchers led by St. Jude Children's Research Hospital scientists have identified another way the process that causes oil to form droplets in water may contribute to solid tumors, such as prostate and breast cancer. The ...

Novel biomarker found in ovarian cancer patients can predict response to therapy

September 20, 2018
Despite months of aggressive treatment involving surgery and chemotherapy, about 85 percent of women with high-grade wide-spread ovarian cancer will have a recurrence of their disease. This leads to further treatment, but ...

Testing fluorescent tracers used to help surgeons determine edges of breast cancer tumors

September 20, 2018
A team of researchers with members from institutions in The Netherlands and China has conducted a test of fluorescent tracers meant to aid surgeons performing tumor removal in breast cancer patients. In their paper published ...

Cancer immunotherapy might benefit from previously overlooked immune players

September 20, 2018
Cancer immunotherapy—efforts to boost a patient's own immune system, allowing it to better fight cancer cells on its own—has shown great promise for some previously intractable cancers. Yet immunotherapy doesn't work ...

New way to target advanced breast cancers

September 20, 2018
A cytokine signature found in certain kinds of breast cancer cells can not only serve as a diagnostic tool for HER2-negative cancers but also offer an effective treatment target.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.