Researchers create a universal map of vision in the human brain

October 4, 2012
Credit: University of Pennsylvania School of Medicine

Nearly 100 years after a British neurologist first mapped the blind spots caused by missile wounds to the brains of soldiers, Perelman School of Medicine researchers at the University of Pennsylvania have perfected his map using modern-day technology. Their results create a map of vision in the brain based upon an individual's brain structure, even for people who cannot see. Their result can, among other things, guide efforts to restore vision using a neural prosthesis that stimulates the surface of the brain. The study appears in the latest issue of Current Biology.

Scientists frequently use a brain imaging technique called functional MRI (fMRI) to measure the seemingly unique activation map of vision on an individual's brain. This fMRI test requires staring at a flashing screen for many minutes while is measured, which is an impossibility for people blinded by eye disease. The Penn team has solved this problem by finding a common across people of the relationship between visual function and .

"By measuring brain anatomy and applying an algorithm, we can now accurately predict how the visual world for an individual should be arranged on the surface of the brain," said senior author Geoffrey Aguirre, MD, PhD, assistant professor of Neurology. "We are already using this advance to study how vision loss changes the organization of the brain."

The researchers combined traditional fMRI measures of brain activity from 25 people with normal vision. They then identified a precise statistical relationship between the structure of the folds of the brain and the representation of the visual world.

"At first, it seems like the visual area of the brain has a different shape and size in every person," said co-lead author Noah Benson, PhD, post-doctoral researcher in Psychology and Neurology. "Building upon prior studies of regularities in brain anatomy, we found that these individual differences go away when examined with our mathematical template."

A World War I neurologist, Gordon Holmes, is generally credited with creating the first schematic of this relationship. "He produced a remarkably accurate map in 1918 with only the crudest of techniques," said co-lead author Omar Butt, MD/PhD candidate in the Perelman School of Medicine at Penn. "We have now locked down the details, but it's taken 100 years and a lot of technology to get it right."

The research was funded by grants from Pennsylvania State CURE fund and the National Institutes of Health (P30 EY001583, P30 NS045839-08, R01 EY020516-01A1).

Explore further: New study examines brain processes behind facial recognition

More information: NC Benson, et al., The Retinotopic Organization of Striate Cortex Is Well Predicted by Surface Topology, Current Biology (2012).

cfn.upenn.edu/aguirre/wiki/pub … _currbio_2012_benson

Related Stories

New study examines brain processes behind facial recognition

April 18, 2011
When you think you see a face in the clouds or in the moon, you may wonder why it never seems to be upside down.

Study shows vision is necessary for spatial awareness tasks

March 21, 2012
(Medical Xpress) -- People who lose their sight at a later stage in life have a greater spatial awareness than if they were born blind, according to scientists at Queen Mary, University of London.

Neuroscientists unlock shared brain codes

October 20, 2011
A team of neuroscientists at Dartmouth College has shown that different individuals' brains use the same, common neural code to recognize complex visual images.

Researchers utilize neuroimaging to show how brain uses objects to recognize scenes

September 13, 2011
Research conducted by Boston College neuroscientist Sean MacEvoy and colleague Russell Epstein of the University of Pennsylvania finds evidence of a new way of considering how the brain processes and recognizes a person's ...

Recommended for you

Team finds training exercise that boosts brain power

October 17, 2017
One of the two brain-training methods most scientists use in research is significantly better in improving memory and attention, Johns Hopkins University researchers found. It also results in more significant changes in brain ...

Worms learn to smell danger

October 17, 2017
Worms can learn. And the ways they learn and respond to danger could lead scientists to new treatments for people with neurodegenerative diseases.

'Busybody' protein may get on your nerves, but that's a good thing

October 17, 2017
Sensory neurons regulate how we recognize pain, touch, and the movement and position of our own bodies, but the field of neuroscience is just beginning to unravel this circuitry. Now, new research from the Salk Institute ...

Mechanism explains how seizures may lead to memory loss

October 16, 2017
Although it's been clear that seizures are linked to memory loss and other cognitive deficits in patients with Alzheimer's disease, how this happens has been puzzling. In a study published in the journal Nature Medicine, ...

Study shows people find well-being more so from special places than from mementoes

October 16, 2017
(Medical Xpress)—A team of researchers at the University of Surrey has found that people experience a feeling of well-being when thinking about or visiting a place that holds special meaning to them. They also found that ...

A dietary supplement dampens the brain hyperexcitability seen in seizures or epilepsy

October 14, 2017
Seizure disorders—including epilepsy—are associated with pathological hyperexcitability in brain neurons. Unfortunately, there are limited available treatments that can prevent this hyperexcitability. However, University ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.