Scattered X-rays improve early detection of pulmonary disease

October 22, 2012
A combination of dark-field and conventional transmission information allows for a clear distinction of healthy versus emphysematous tissue and an assessment of the regional distribution of the disease. From such images, a doctor might in future not only see if a patient is diseased but also which parts of the lung are affected and how much. Credit: Simone Schleede / Technische Universitaet Muenchen

Severe lung diseases are among the leading causes of death worldwide. To date they have been difficult to diagnose at an early stage. Within an international collaboration scientists from Munich now developed an X-ray technology to do just that. Now they are working on bringing the procedure into medical practice.

(COPD) is considered the fourth most common cause of death in the United States. Usually the precursor to this life-threatening lung disease is a . Partially destroyed alveoli and an over-inflation of the lungs, known as emphysema, are serious side effects. However, the subtle differences in the tissue are barely discernable in standard X-ray images.

In addition to the conventional X-ray images, the Munich scientists analyzed the radiation scattered by the tissue. From these data they calculated detailed images of the lungs of the investigated mice. Using such images, physicians can see not only if a patient is diseased but also how strongly which parts of the lung are affected.

"Especially in early stages of the disease, identification, precise quantification and localization of emphysema through the new technology would be very helpful", says Professor Maximilian Reiser, head of the Institute for at Ludwig-Maximilians-University Munich. "We hope that one day this technology will improve COPD diagnosis and therapy, while avoiding the higher associated with high-resolution CT".

The procedure has been developed as part of the research work of the Cluster of Excellence Munich-Centre for Advanced Photonics (MAP) by physicists from the Technische Universitaet Muenchen (TUM), physicians at the Ludwig-Maximilians-University Munich (LMU) and the Comprehensive Center (CPC) of the Helmholtz Zentrum Muenchen.

For their experiments, the researchers used the Compact Light Source, a compact synchrotron radiation source of Lyncean Technologies Inc. (USA). In the future the Center for Advanced Laser Applications (CALA), a joint project of TUM and LMU on the Research Campus Garching, will develop new laser-driven x-ray sources.

In parallel, the research group led by Franz Pfeiffer, professor for Biomedical Physics at the Technische Universitaet Muenchen, works on the improvement of the x-ray scattering analysis to pave the way for its use with conventional X-ray machines.

More information: Emphysema diagnosis using X-ray dark-field imaging at a laser-driven compact synchrotron light source. Simone Schleede, Felix G. Meinel, Martin Bech, Julia Herzen, Klaus Achterhold, Guillaume Potdevin, Andreas Malecki, Silvia Adam-Neumair, Sven F. Thieme, Fabian Bamberg, Konstantin Nikolau, Alexander Bohla, Ali Ö. Yildirim, Rod Loewen, Martin Gifford, Ronald Ruth, Oliver Eickelberg, Maximilian Reiser, and Franz Pfeiffer. Proceedings of the National Academy of Sciences, PNAS, Early Edition, 2012, DOI: 10.1073/pnas.1206684109

Related Stories

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.