Air exposure between blinks affects deposits on contact lenses

November 5, 2012, Wolters Kluwer Health

Modern contact lens materials are prone to drying when exposed to air, which contributes to the buildup of deposits on contact lenses, according to a study – "The Impact of Intermittent Air Exposure on Lipid Deposition", appearing in the November issue of Optometry and Vision Science, official journal of the American Academy of Optometry.

With significant differences between materials, the buildup of lipid deposits on contact lenses is affected by "intermittent air exposure" between blinks, according to Holly Loretz, PhD, and colleagues of the Centre for Contact Lens Research at University of Waterloo, Ont., Canada. The findings may help in developing that are less prone to drying and lipid deposition—thus increasing the chances of successful contact lens wear.

Air Exposure Leads to Increased Lipid Deposits on Contact Lenses

The researchers built a new , called the "model blink cell," to examine factors affecting the buildup of lipid (fatty) deposits on contact lenses. The model blink cell was designed to cycle contact lens materials in and out of an artificial tear solution containing trace amounts of cholesterol or other lipids naturally present in tear fluid.

To mimic the effects of routine lens wear, six different contact lens materials were subjected to simulated blinks and eyelid motion for varying periods. The researchers analyzed the effects of air exposure between "blinks" on the buildup of lipid deposits.

For most of the materials tested, air exposure led to increased lipid deposits. Compared to lenses that remained submerged in the artificial tear solution, the amount of deposited on lenses was about three times greater with air exposure. For another type of lipid (phosphatidylcholine), lipid deposition was about 40 percent greater with intermittent air exposure.

Today's sophisticated contact lens materials have related to "wettability" that seem to contribute to a cycle of lipid deposition that is encouraged by repeated wetting and drying. "This wetting/de-wetting cycle can occur after every blink and therefore thousands of times a day, thus allowing lipid to continuously accumulate on and in the lens material," Dr Loretz and coauthors write.

What does it all mean for contact lens wearers? " gather deposits during wear and contribute to discomfort and how successful the lenses are for the wearer," explains Anthony Adams, OD, PhD, Editor-in-Chief of Optometry and . "Dry eyes can also negatively affect the chances of successful contact lens wear."

Although no laboratory model can fully simulate the effects of real-life contact lens wear, the model blink cell improves on previous approaches by accounting for the drying effects of intermittent air exposure. The effects of drying on may be even more important with today's sophisticated hydrophobic ("unwettable") lens materials.

"The model blink cell device allows clinical researchers to move beyond the current relatively simple in vitro models for studying deposits to a more real-life modeling of a contact lens on the eye, particularly with today's more hydrophobic silicon component hydrogel lenses," Dr Adams adds. "The authors are hopeful that this will allow research that could be expected to provide improved comfort in wear."

Explore further: Loyola optometrist warns not to wear tinted contact lenses for Halloween without a prescription

More information: To read the article "The Impact of Intermittent Air Exposure on Lipid Deposition", please visit http://journals.lww.com/optvissci/Fulltext/2012/11000/The_Impact_of_Intermittent_Air_Exposure_on_Lipid.6.aspx

Related Stories

Loyola optometrist warns not to wear tinted contact lenses for Halloween without a prescription

October 23, 2012
Decorative tinted contact lenses will be popular accessories this Halloween, but a Loyola University Medical Center optometrist is warning that improper use could cause severe eye damage.

Scleral lenses benefit patients with corneal irregularities

October 9, 2012
(Medical Xpress)—A UC Davis Health System Eye Center study found that scleral lenses, which rest beyond the limits of the cornea and cover the white part of the eye (sclera), were a good alternative for patients with corneal ...

Recommended for you

Study advances gene therapy for glaucoma

January 16, 2018
While testing genes to treat glaucoma by reducing pressure inside the eye, University of Wisconsin-Madison scientists stumbled onto a problem: They had trouble getting efficient gene delivery to the cells that act like drains ...

New study offers added hope for patients awaiting corneal transplants

January 9, 2018
New national research led by Jonathan Lass of Case Western Reserve University School of Medicine has found that corneal donor tissue can be safely stored for 11 days before transplantation surgery to correct eye problems ...

Diabetic blindness caused and reversed "trapped" immune cells in rodent retinas

January 3, 2018
Johns Hopkins researchers have discovered a cell signaling pathway in mice that triggers vision loss in patients with diabetic retinopathy and retinal vein occlusion – diseases characterized by the closure of blood vessels ...

Ophthalmologists increasingly dissatisfied with electronic health records

December 29, 2017
Ophthalmologists' use of electronic health records (EHR) systems for storing and accessing patients' medical histories more than doubled between 2006 and 2016, while their perceptions of financial and clinical productivity ...

Higher omega-3 fatty acid intake tied to lower glaucoma risk

December 26, 2017
(HealthDay)—Increased daily intake of ω-3 fatty acids is associated with lower odds of glaucoma, but higher levels of total polyunsaturated fatty acid (PUFA) intake are associated with higher odds of developing glaucoma, ...

Protein analysis allows for treatment of eye-disease symptoms with existing drugs

December 21, 2017
Demonstrating the potential of precision health, a team led by a researcher at the Stanford University School of Medicine has matched existing drugs to errant proteins expressed by patients with a rare eye disease.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.