Cancer data in the 'cloud' could lead to more effective treatment

November 6, 2012, Johns Hopkins University
This graphic depicts stained slides of ovarian cancer tissue sections that were analyzed using custom software to extract form and shape features of many cells rapidly. The distribution of the features is then correlated with clinical outcomes, such as survival, drug response and drug resistance. Credit: Johns Hopkins University

Storing music and photos on distant computers via "cloud" technology is nothing new. But Johns Hopkins researchers are now using this tactic to collect detailed information from thousands of cancer cell samples. The goal is to help doctors make better predictions about how a patient's illness will progress and what type of treatment will be most effective.

The project, supported by a new $3.75 million grant, was launched because researchers now realize that affecting the same type of tissue can behave differently in different patients. may grow rapidly in one patient, but expand at a glacial pace in another. A drug that kills a tumor in one patient may be useless or even harmful in the next patient.

To help doctors prepare a more personalized medical prognosis and treatment plan, Johns Hopkins has assembled experts in and engineering, led by Denis Wirtz , associate director of the university's Institute for NanoBioTechnology. The team has begun characterizing and storing cancer data collected through a process called high-throughput cell phenotyping.

"We use scanning microscopy to take pictures of the size and shape of cancer ," said Wirtz, who also directs the Johns Hopkins Physical Sciences-Oncology Center. "We also extract information about what is happening inside the cells and at the . We make notes of the age and gender of the patient and any treatment received. Looked at as a whole, this information can help us identify a 'signature' for a certain type of cancer.

That gives us a better idea of how it spreads and how it responds to certain drugs." He added, "The long-range goal is to make this data available through the Internet to physicians who are diagnosing and treating around the world."

Wirtz , a professor of chemical and biomolecular engineering in the university's Whiting School of Engineering, has been working with School of Medicine researchers Ralph Hruban and Anirban Maitra to begin the database with material from the files of thousands of cancer patients who have been evaluated and treated at Johns Hopkins. The patients' personal information has been deleted, but the remaining medical case data allows the researchers to trace the course of the disease from initial testing through treatment and outcome.

"This technology may provide a way to centralize specimen data, images and analysis in a way that hasn't been done before," said Maitra, a professor of pathology and oncology, "and we'll be using the information now to find better ways to treat disease."

The Johns Hopkins team will soon collect similar data from other major U.S. cancer research centers that are also supported by the National Institutes of Health. The initial focus will be , which is particularly aggressive and lethal.

"We may be able to correlate DNA changes that occur in individual pancreatic cancer cells with the appearance of these cells at the cellular level," said Hruban, a professor of pathology and oncology and director of the Sol Goldman Pancreatic Cancer Research Center. "The potential for this approach to provide insight into the fundamental biology of pancreatic cancer is significant, as are the potential clinical applications in predicting a patient's prognosis and in guiding therapy."

Other types of the disease, including breast and prostate cancer, will be addressed in the near future. Early data is being stored on computers at the Los Alamos National Laboratory under an arrangement funded by the NIH.

According to Wirtz, the details recorded in the online database will differ from those produced in traditional biopsy evaluations. Typically, information about a patient's disease is obtained by averaging the results from trillions of cells that have been blended together.

With the new scanning system, however, the Johns Hopkins researchers will obtain views of individual cells retrieved from individual patients, even from different parts of the same organ.

This ability to examine single cells is important, Wirtz said, because scientists have discovered that even cells that possess the identical genetic makeup can vary in other small ways that affect the behavior of cancer. For example, these tiny variations in genetically identical cells can cause some to be vulnerable to a particular cancer drug.

"We've come to realize that it is the heterogeneity—the diversity of cells that have different characteristics—that is important in evaluating a cancer case," Wirtz said. "In the end, what matters is the cell properties. That's what we measure."

Researchers will begin their studies on clinical samples collected at Johns Hopkins to determine how well the technology works and validate it's potential before it can be used to aid clinical decision-making.

The software and hardware used in the high-throughput cell phenotyping process is protected by patents obtained through the Johns Hopkins Technology Transfer office. The $3.75 million National Cancer Institute grant (CA174388) will be disbursed to the Johns Hopkins Institute for over a five-year period. The funds were allocated through the National Institutes of Health's Common Fund Single Cell Analysis Program.

Explore further: Team finds biological indicator of aggressive, recurrent forms of prostate cancer

Related Stories

Team finds biological indicator of aggressive, recurrent forms of prostate cancer

August 27, 2012
(Medical Xpress)—In a study to decipher clues about how prostate cancer cells grow and become more aggressive, Johns Hopkins urologists have found that reduction of a specific protein is correlated with the aggressiveness ...

Protein 'switches' could turn cancer cells into tiny chemotherapy factories

September 23, 2011
Johns Hopkins researchers have devised a protein "switch" that instructs cancer cells to produce their own anti-cancer medication.

HIV drug shows efficacy in treating mouse models of HER2+ breast cancer

October 6, 2012
The HIV protease inhibitor, Nelfinavir, can be used to treat HER2-positive breast cancer in the same capacity and dosage regimen that it is used to treat HIV, according to a study published October 5 in the Journal of the ...

Recommended for you

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

These foods may up your odds for colon cancer

January 18, 2018
(HealthDay)—Chowing down on red meat, white bread and sugar-laden drinks might increase your long-term risk of colon cancer, a new study suggests.

The pill lowers ovarian cancer risk, even for smokers

January 18, 2018
(HealthDay)—It's known that use of the birth control pill is tied to lower odds for ovarian cancer, but new research shows the benefit extends to smokers or women who are obese.

Researchers develop swallowable test to detect pre-cancerous Barrett's esophagus

January 17, 2018
Investigators at Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center have developed a simple, swallowable test for early detection of Barrett's esophagus that offers promise ...

Scientists zoom in to watch DNA code being read

January 17, 2018
Scientists have unveiled incredible images of how the DNA code is read and interpreted—revealing new detail about one of the fundamental processes of life.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.