Learning who's the top dog: Study reveals how the brain stores information about social rank

November 8, 2012, Wellcome Trust

Researchers supported by the Wellcome Trust have discovered that we use a different part of our brain to learn about social hierarchies than we do to learn ordinary information. The study provides clues as to how this information is stored in memory and also reveals that you can tell a lot about how good somebody is likely to be at judging social rank by looking at the structure of their brain.

Primates (and people) are remarkably good at ranking each other within social hierarchies, a survival technique that helps us to avoid conflict and select advantageous allies. However, we know surprisingly little about how the brain does this.

The team at the UCL Institute for Cognitive Neuroscience used brain imaging techniques to investigate this in twenty six healthy volunteers.

Participants were asked to play a simple science fiction computer game where they would be acting as future investors. In the first phase they were told they would first need to learn about which individuals have more power within a fictitious space mining company (the ), and then which galaxies have more (non-social information).

Whilst they were taking part in the experiments, the team used functional (fMRI) to monitor activity in their brains. Another MRI scan was also taken to look at their .

Their findings reveal a striking dissociation between the used to learn social and non-social hierarchies. They observed increased in both the and the hippocampus when participants were learning about the hierarchy of executives within the fictitious space mining company. In contrast, when learning about the non-social hierarchy, relating to which galaxies had more mineral, only the hippocampus was recruited.

They also found that those who were better at learning the social hierarchy had an increased volume of grey matter in the amygdala compared with those less able.

Dr Dharshan Kumaran at the UCL Institute of , who led the study, explains: "These findings are telling us that the amygdala is specifically involved in learning information about social rank based on experience and suggest that separate neural circuits are involved than for learning hierarchy information of a non-social nature."

This is the first time that researchers have looked at how rank within a social hierarchy is judged based on knowledge acquired through experience, rather than perceptual cues like visual appearance which are typically unreliable predictors of rank.

In a second phase of the experiment, the team also looked at how we recall information about social rank when we meet somebody again and their study reveals how this information is represented in the brain. They asked participants to place bids on investment projects based on the knowledge about rank they had acquired during the first phase of the experiment. This was played out in the game as a particular executive heading up a mission to harvest minerals from a galaxy.

They found evidence that social rank, but not non-social rank, is translated into neural activity in the amygdala in a linear fashion. As such, the level of activity in the amygdala was observed to increase according to the social rank of the person being encountered. This signal provides a potential mechanism by which individuals select advantageous coalition partners in the real world based on their rank.

Being able to interpret is important for us to meet the challenging pressures of living in large social groups. Knowing where we fit into a social group determines how we behave towards different people. As well as giving new understanding of which brain circuits are involved in learning and storing this information, the findings reported in this study help to explain why some people are better at it than others.

The researchers are now keen to look at people with brain and developmental disorders to see how their ability to learn social hierarchies is affected.

The study is published today in the journal Neuron.

Explore further: Monkeys with larger friend networks have more gray matter

More information: D. Kumaran, H.L Melo & E. Duzel. The emergence and representation of knowledge about social and non-social hierarchies. Neuron, 8 November 2012.

Related Stories

Monkeys with larger friend networks have more gray matter

November 4, 2011
New research in the UK on rhesus macaque monkeys has found for the first time that if they live in larger groups they develop more gray matter in parts of the brain involved in processing information on social interactions.

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.