Surprising findings from Exome Sequencing Project reported

November 6, 2012, American Society of Human Genetics

A multi-institutional team of researchers has sequenced the DNA of 6,700 exomes, the portion of the genome that contains protein-coding genes, as part of the National Heart, Lung and Blood Institute (NHLBI)-funded Exome Sequencing Project, one of the largest medical sequencing studies ever undertaken.

Scientists participating in the project initially expected that individual rare variants would have a greater effect on over 80 heart, lung and blood related traits and diseases of high public health significance, said Suzanne M. Leal, Ph.D., professor and director, Center for Statistical Genetics in the Department of Molecular and Human Genetics of Baylor College of Medicine in Houston, TX.

The researchers found that many (1.1 million) of the 1.2 million coding variants that they identified in exome data from 4,420 European-Americans and 2,312 African-Americans occurred very infrequently in the population and often were only observed in a single individual, explained Dr. Leal, who presented the findings today at the American Society of Human Genetics 2012 meeting.

Dr. Leal added that most of the observed coding variants are population specific, occurring in either European or African Americans. "Of the identified variants, about 720,000 change the in a manner that could produce flawed proteins. Yet the role played by most of these variants in disease development has not been established," she said.

The major goal of the project was to understand how variation in the exome affects heart, lung and blood related traits and diseases.

The were selected from a sample of over 220,000 individuals who participated in another National Institute of Health (NIH) supported study that had collected extensive on the participants. "Individuals were selected to have a disease endpoint of interest or an extreme trait value of public health importance," said Dr. Leal.

By sequencing the exomes of 91 , Dr. Leal and her research colleagues discovered and replicated an association between variants in the DCTN4 gene and when a patient first develops a Pseudomonas aeruginosa airway infection.*

The researchers were also able to replicate many known associations between individual DNA variants and traits, such as high blood levels of low-density lipoprotein, known as the 'bad' cholesterol, and C-reactive protein, which increases the body's response to inflammation.

The majority of these findings are for variants that are common in the population, said Dr. Leal.

To detect associations with rare variants, analyses were performed by aggregating information from individual variants within a gene. This approach successfully detected an association with rare variants in the APOC3 gene that lowers triglyceride levels, an unhealthy type of fat in the blood, said Dr. Leal.

"In order to detect associations with rare variants, due to their modest effects, very large samples sizes are required. In many cases the data from the Exome Sequencing Project gave us leads that had to be evaluated using more study subjects. One mechanism for doing this was by genotyping additional samples using the exome chip, which contains approximately 240,000 coding variants. The Exome Sequencing Project played a very important role in the development of the exome chip, by being the largest contributor of data," she added.

According to the NHLBI, exome sequencing is an efficient way to search for rare variants associated with complex traits. In contrast to previous genome wide association studies (GWAS), which concentrated on common variants scattered throughout the genome, exome sequencing has the potential to accelerate the search for unambiguous genetic links to disease by focusing attention on the protein coding portion of the genome

In the journal Science**, Dr. Leal and her colleagues wrote that GWAS have substantially improved knowledge about common genetic variation, but have been generally uninformative about the patterns of rare variation within the protein coding regions of the genome.

"This is a very new field for which new methodology had to be developed. We learned many lessons in the quality control and analysis of exome data, as well as what types of results one would expect to see when analyzing rare variants. Additionally, the Exome Sequencing Project has been extremely valuable in obtaining a better understanding of population genomics and the history of man," Dr. Leal said.

Explore further: DNA from cystic fibrosis patients with and without chronic infections points to unsuspected mutation

More information: evs.gs.washington.edu/EVS

Related Stories

DNA from cystic fibrosis patients with and without chronic infections points to unsuspected mutation

July 8, 2012
(Medical Xpress) -- Comparing the DNA from patients at the best and worst extremes of a health condition can reveal genes for resistance and susceptibly. This approach discovered rare variations in the DCTN4 gene among cystic ...

Abundance of rare DNA changes following population explosion may hold clues to common diseases

May 17, 2012
One-letter switches in the DNA code occur much more frequently in human genomes than anticipated, but are often only found in one or a few individuals.

Rare mutations may help explain aneurysm in high-risk families

February 3, 2012
An innovative approach to genome screening has provided clues about rare mutations that may make people susceptible to brain aneurysms, predisposing them to brain bleeds, according to preliminary late-breaking research presented ...

BGI develops whole exome sequencing analysis of FFPE DNA samples to boost biomedicine

September 18, 2012
BGI Tech Solutions announced today that they have achieved whole exome sequencing analysis of total degraded DNA as low as 200 ng from formalin fixed paraffin embedded (FFPE) samples. This advancement enables researchers ...

Recommended for you

Variants in non-coding DNA contribute to inherited autism risk

April 19, 2018
In recent years, researchers have firmly established that gene mutations appearing for the first time, called de novo mutations, contribute to approximately one-third of cases of autism spectrum disorder (ASD). In a new study, ...

Researchers discover link between gene variation and language

April 18, 2018
What shapes the basic features of a language?

Natural selection still at work in humans

April 18, 2018
Evolution has shaped the human race, with University of Queensland researchers finding signatures of natural selection in the genome that influence traits associated with fertility and heart function.

Gene therapy for beta-thalassemia safe, effective in people

April 18, 2018
In a powerful example of bench-to-bedside science showing how observations made in the lab can spark life-altering therapies in clinic, an international team of clinician-investigators has announced that gene therapy for ...

Potential lines of attack against prostate cancer

April 17, 2018
Researchers from The University of East Anglia (UEA) have contributed to the world's largest study into genes that drive prostate cancer – identifying 80 molecular weaknesses that could be targeted by drugs to treat the ...

Epstein-Barr virus linked to seven serious diseases

April 16, 2018
A far-reaching study conducted by scientists at Cincinnati Children's reports that the Epstein-Barr virus (EBV)—best known for causing mononucleosis—also increases the risks for some people of developing seven other major ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.