Surprising findings from Exome Sequencing Project reported

November 6, 2012

A multi-institutional team of researchers has sequenced the DNA of 6,700 exomes, the portion of the genome that contains protein-coding genes, as part of the National Heart, Lung and Blood Institute (NHLBI)-funded Exome Sequencing Project, one of the largest medical sequencing studies ever undertaken.

Scientists participating in the project initially expected that individual rare variants would have a greater effect on over 80 heart, lung and blood related traits and diseases of high public health significance, said Suzanne M. Leal, Ph.D., professor and director, Center for Statistical Genetics in the Department of Molecular and Human Genetics of Baylor College of Medicine in Houston, TX.

The researchers found that many (1.1 million) of the 1.2 million coding variants that they identified in exome data from 4,420 European-Americans and 2,312 African-Americans occurred very infrequently in the population and often were only observed in a single individual, explained Dr. Leal, who presented the findings today at the American Society of Human Genetics 2012 meeting.

Dr. Leal added that most of the observed coding variants are population specific, occurring in either European or African Americans. "Of the identified variants, about 720,000 change the in a manner that could produce flawed proteins. Yet the role played by most of these variants in disease development has not been established," she said.

The major goal of the project was to understand how variation in the exome affects heart, lung and blood related traits and diseases.

The were selected from a sample of over 220,000 individuals who participated in another National Institute of Health (NIH) supported study that had collected extensive on the participants. "Individuals were selected to have a disease endpoint of interest or an extreme trait value of public health importance," said Dr. Leal.

By sequencing the exomes of 91 , Dr. Leal and her research colleagues discovered and replicated an association between variants in the DCTN4 gene and when a patient first develops a Pseudomonas aeruginosa airway infection.*

The researchers were also able to replicate many known associations between individual DNA variants and traits, such as high blood levels of low-density lipoprotein, known as the 'bad' cholesterol, and C-reactive protein, which increases the body's response to inflammation.

The majority of these findings are for variants that are common in the population, said Dr. Leal.

To detect associations with rare variants, analyses were performed by aggregating information from individual variants within a gene. This approach successfully detected an association with rare variants in the APOC3 gene that lowers triglyceride levels, an unhealthy type of fat in the blood, said Dr. Leal.

"In order to detect associations with rare variants, due to their modest effects, very large samples sizes are required. In many cases the data from the Exome Sequencing Project gave us leads that had to be evaluated using more study subjects. One mechanism for doing this was by genotyping additional samples using the exome chip, which contains approximately 240,000 coding variants. The Exome Sequencing Project played a very important role in the development of the exome chip, by being the largest contributor of data," she added.

According to the NHLBI, exome sequencing is an efficient way to search for rare variants associated with complex traits. In contrast to previous genome wide association studies (GWAS), which concentrated on common variants scattered throughout the genome, exome sequencing has the potential to accelerate the search for unambiguous genetic links to disease by focusing attention on the protein coding portion of the genome

In the journal Science**, Dr. Leal and her colleagues wrote that GWAS have substantially improved knowledge about common genetic variation, but have been generally uninformative about the patterns of rare variation within the protein coding regions of the genome.

"This is a very new field for which new methodology had to be developed. We learned many lessons in the quality control and analysis of exome data, as well as what types of results one would expect to see when analyzing rare variants. Additionally, the Exome Sequencing Project has been extremely valuable in obtaining a better understanding of population genomics and the history of man," Dr. Leal said.

Explore further: DNA from cystic fibrosis patients with and without chronic infections points to unsuspected mutation

More information: evs.gs.washington.edu/EVS

Related Stories

DNA from cystic fibrosis patients with and without chronic infections points to unsuspected mutation

July 8, 2012
(Medical Xpress) -- Comparing the DNA from patients at the best and worst extremes of a health condition can reveal genes for resistance and susceptibly. This approach discovered rare variations in the DCTN4 gene among cystic ...

Abundance of rare DNA changes following population explosion may hold clues to common diseases

May 17, 2012
One-letter switches in the DNA code occur much more frequently in human genomes than anticipated, but are often only found in one or a few individuals.

Rare mutations may help explain aneurysm in high-risk families

February 3, 2012
An innovative approach to genome screening has provided clues about rare mutations that may make people susceptible to brain aneurysms, predisposing them to brain bleeds, according to preliminary late-breaking research presented ...

BGI develops whole exome sequencing analysis of FFPE DNA samples to boost biomedicine

September 18, 2012
BGI Tech Solutions announced today that they have achieved whole exome sequencing analysis of total degraded DNA as low as 200 ng from formalin fixed paraffin embedded (FFPE) samples. This advancement enables researchers ...

Recommended for you

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.