DNA from cystic fibrosis patients with and without chronic infections points to unsuspected mutation

July 8, 2012 By Leila Gray
This is a University of Washington exome sequencing lab where scientists analyze and compare protein-coding regions genomes. Credit: Clare McLean

(Medical Xpress) -- Comparing the DNA from patients at the best and worst extremes of a health condition can reveal genes for resistance and susceptibly. This approach discovered rare variations in the DCTN4 gene among cystic fibrosis patients most prone to early, chronic airway infections.

The DCTN4 gene codes for dynactin 4. This protein is a component of a molecular motor that moves trouble-making microbes along a cellular conveyer belt into miniscule chemical vats, called , for annihilation.

This study, led by the University of Washington, is part of the National Heart Lung and Blood Institute GO Exome Sequencing Project and its Lung GO, both major National Institutes of Health chronic disease research efforts.

Similar "testing the extremes" strategies may have important applications in uncovering behind other more common, traits, such as healthy and unhealthy hearts.

The results of the cystic fibrosis infection susceptibility study appear this Sunday, July 8, in .

An exome sequencing lab in the UW Department of Genome Sciences. Image: Clare McLean

The infection in question was Pseudomonas aeruginosa, an opportunistic that commonly infects the lungs of people with cystic fibrosis and other airway-clogging disorders. The bacteria can unite into a slithery, hard-to-treat that hampers breathing and harms . are linked to poor lung function and shorter lives among . These bacteria rarely attack people with normal lungs and well-functioning immune systems.

In the study, these rare variations in DCTN4 did not appear in any of the cystic who were the most resistant to Pseudomonas infection. The study subjects most susceptible to early, chronic infection had at least one DCTN4 missense variant. A missense variant produces a protein that likely can't function properly.

The lead author of the report published July 8 in Nature Genetics is Mary J. Emond, research associate professor of biostatistics at the University of Washington School of Public Health in Seattle. The senior author is medical geneticist Michael Bamshad, UW professor of pediatrics in the Division of Genetic Medicine.

To the extent of their knowledge, the researchers think that this might be the first time that genetic variants underlying complex trait were discovered by sequencing all the protein-coding portions of the genomes of people at each extreme of a disease spectrum.

"We did not have a candidate gene in mind when we did this study," said Emond. Statistical analysis of the DNA of 91 patients led the research team to this particular gene. Of the initial study group, 43 children had their first onset of chronic lung infection with Pseudomonas as when they were very young, and the 48 oldest individuals had not yet reached a state of chronic infection. The patients selected for sequencing were from the Early Pseudomonas Control (EPIC) Observational Study, a project at the Seattle Children's Research Institute, and the North American Genetic Modifiers Study. Exome sequencing was done by UW researchers in the laboratory of Deborah Nickerson, UW professor of genome sciences.

Comparisons of the protein coding portions of the study subjects' DNA called the researchers attention to missense variations of the DCTN4 gene. The researchers went on to screen a selected group of 1,322 other EPIC participants to check their findings.

Exome Sequencing Project scientists are using an approach similar to the one in this study to examine the genetics behind resistance and susceptibility to other chronic conditions like obesity, heart attacks and hypertension. They plumb for gene variations linked to heart disease, for example by putting DNA maps from people with ideal cholesterol levels up against those from people with exceptionally poor levels.

Adapting a similar strategy to determine the genetics underlying other complex human traits may require exome sequencing of a much larger sample sizes, the researchers noted.

"As the costs of exome sequencing are dropping rapidly and more efficient statistical analysis is becoming available, we think medical researchers' enthusiasm for this approach will continue," Bamshad predicted.

Explore further: Severity of cystic fibrosis may be determined by presence of newly-identified modifier genes

More information: http//www.nature.com/ng/journa … rent/pdf/ng.2344.pdf

Related Stories

Severity of cystic fibrosis may be determined by presence of newly-identified modifier genes

May 25, 2011
(Medical Xpress) -- In an age where personalized medicine is within reach, a one-size-fits-all approach just won’t cut it. A group of North American researchers have identified two “modifier” genes in the genomes ...

Recommended for you

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

Discovering a protein's role in gene expression

November 10, 2017
Northwestern Medicine scientists have discovered that a protein called BRWD2/PHIP binds to histone lysine 4 (H3K4) methylation—a key molecular event that influences gene expression—and demonstrated that it does so via ...

Twin study finds genetics affects where children look, shaping mental development

November 9, 2017
A new study co-led by Indiana University that tracked the eye movement of twins finds that genetics plays a strong role in how people attend to their environment.

Boy with rare disease gets brand new skin with gene therapy

November 8, 2017
Doctors treating a critically ill boy with a devastating skin disease used experimental gene therapy to create an entirely new skin for most of his body in a desperate attempt to save his life.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.