New method helps link genomic variation to protein production

November 6, 2012, American Society of Human Genetics

Scientists have adopted a novel laboratory approach for determining the effect of genetic variation on the efficiency of the biological process that translates a gene's DNA sequence into a protein, such as hemoglobin, according to a presentation, Nov. 6, at the American Society of Human Genetics 2012 meeting in San Francisco.

In the 0.1% of the DNA that differs between any two individuals, scientists search for the underlying human genetic differences, including .

"How exactly these slight changes in the DNA affect the biology of the human body is not known in most cases," said Constantin Polychronakos, M.D., professor of pediatrics, and human genetics at McGill University, Montreal, Canada.

"We decided to investigate the possibility that some of these changes may alter the translation of RNA into protein, a question that had not been systematically examined before," he added.

Translation is the final stage of gene expression at which the gene's DNA recipe for a protein can be modified, said McGill University scientist Quan Li, Ph.D., who presented the research.

In general, have focused on finding links between diseases and variation in DNA. However, the new study takes a big step toward understanding how that variation affects the production of proteins, which are the molecules that most directly affect health and disease.

The study was designed to determine the effect of single- (SNPs), which are variations in the DNA sequence, on the process of translation, Dr. Li said.

Translation begins when a gene's DNA sequence is transcribed into the (mRNA) molecule that carries the transcript, or the blueprint for the protein encoded by the gene, to ribosomes, where proteins are manufactured in a cell.

Dr. Li and his colleagues developed a novel and scalable method that uses the binding of mRNAs to ribosomes as a proxy for translational efficiency of mRNAs that differ from one another because of SNPs.

"Because efficiently translated transcripts associate with multiple ribosomes while less active ones with fewer or no ribosomes, we hypothesized that functional transcripts would show a detectable shift in this distribution," said Dr. Li.

Huiqi Qu, Ph.D., co-investigator of this study and assistant professor at the University of Texas School of Public Health, Brownsville, said, "The results of the proof-of-principle pilot study have clearly shown translational differences between mRNAs that differ only slightly from one another can be detected at a transcriptome-wide scale."

The transcriptome refers to the multiple types of RNAs that function in a cell.

"This study may represent the 'tip of the iceberg,' and its application to larger sample sizes will facilitate a shift toward functional genomics," said Dr. Polychronakos. "Functional genomics tells us how affects disease and points more directly toward possible therapies."

"It will add an important tool in the evaluation of genetic loci associated with complex disorders," Dr. Polychronakos added.

Explore further: Non-coding antisense RNA can be used to stimulate protein production

More information: The researchers' presentation is titled, "Translational cis-regulation of gene expression in the human genome: the effect of human single nucleotide polymorphisms."

Related Stories

Non-coding antisense RNA can be used to stimulate protein production

October 16, 2012
While studying Parkinson's disease, an international research group made a discovery which can improve industrial protein synthesis for therapeutic use. They managed to understand a novel function of non-protein coding RNA: ...

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.