New method helps link genomic variation to protein production

November 6, 2012

Scientists have adopted a novel laboratory approach for determining the effect of genetic variation on the efficiency of the biological process that translates a gene's DNA sequence into a protein, such as hemoglobin, according to a presentation, Nov. 6, at the American Society of Human Genetics 2012 meeting in San Francisco.

In the 0.1% of the DNA that differs between any two individuals, scientists search for the underlying human genetic differences, including .

"How exactly these slight changes in the DNA affect the biology of the human body is not known in most cases," said Constantin Polychronakos, M.D., professor of pediatrics, and human genetics at McGill University, Montreal, Canada.

"We decided to investigate the possibility that some of these changes may alter the translation of RNA into protein, a question that had not been systematically examined before," he added.

Translation is the final stage of gene expression at which the gene's DNA recipe for a protein can be modified, said McGill University scientist Quan Li, Ph.D., who presented the research.

In general, have focused on finding links between diseases and variation in DNA. However, the new study takes a big step toward understanding how that variation affects the production of proteins, which are the molecules that most directly affect health and disease.

The study was designed to determine the effect of single- (SNPs), which are variations in the DNA sequence, on the process of translation, Dr. Li said.

Translation begins when a gene's DNA sequence is transcribed into the (mRNA) molecule that carries the transcript, or the blueprint for the protein encoded by the gene, to ribosomes, where proteins are manufactured in a cell.

Dr. Li and his colleagues developed a novel and scalable method that uses the binding of mRNAs to ribosomes as a proxy for translational efficiency of mRNAs that differ from one another because of SNPs.

"Because efficiently translated transcripts associate with multiple ribosomes while less active ones with fewer or no ribosomes, we hypothesized that functional transcripts would show a detectable shift in this distribution," said Dr. Li.

Huiqi Qu, Ph.D., co-investigator of this study and assistant professor at the University of Texas School of Public Health, Brownsville, said, "The results of the proof-of-principle pilot study have clearly shown translational differences between mRNAs that differ only slightly from one another can be detected at a transcriptome-wide scale."

The transcriptome refers to the multiple types of RNAs that function in a cell.

"This study may represent the 'tip of the iceberg,' and its application to larger sample sizes will facilitate a shift toward functional genomics," said Dr. Polychronakos. "Functional genomics tells us how affects disease and points more directly toward possible therapies."

"It will add an important tool in the evaluation of genetic loci associated with complex disorders," Dr. Polychronakos added.

Explore further: Non-coding antisense RNA can be used to stimulate protein production

More information: The researchers' presentation is titled, "Translational cis-regulation of gene expression in the human genome: the effect of human single nucleotide polymorphisms."

Related Stories

Non-coding antisense RNA can be used to stimulate protein production

October 16, 2012
While studying Parkinson's disease, an international research group made a discovery which can improve industrial protein synthesis for therapeutic use. They managed to understand a novel function of non-protein coding RNA: ...

Recommended for you

A rogue gene is causing seizures in babies—here's how scientists wants to stop it

July 26, 2017
Two rare diseases caused by a malfunctioning gene that triggers seizures or involuntary movements in children as early as a few days old have left scientists searching for answers and better treatment options.

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.