The brain recruits its own decision-making circuits to simulate how other people make decisions

December 14, 2012
The researchers scanned participants' brains while they made a simple decision and while they predicted other people's decisions about the same task. Credit: 2012 Hiroyuki Nakahara, RIKEN Brain Science Institute

A team of researchers led by Hiroyuki Nakahara and Shinsuke Suzuki of the RIKEN Brain Science Institute has identified a set of brain structures that are critical for predicting how other people make decisions.

This phenomenon is thought to involve simulation learning, a process by which the brain generates a model of how another person will act by directly recruiting its own decision-making circuits. However, little else is known about the underlying brain mechanisms.

Nakahara and his colleagues used to scan participants' brains while they performed two simple decision-making tasks. In one, they were shown pairs of and had to choose the 'correct' one from each, based on randomly assigned reward values. In the second, they had to predict other people's decisions for the same task.

The researchers confirmed that the participants' own decision-making circuits were recruited to predict others' decisions. The scans showed that their brains simultaneously tracked how other people behaved when presented with each pair of stimuli, and the rewards they received.

Effective simulated learning occurs when the brain minimizes two different prediction errors—the discrepancies between its prediction of others' actions and the rewards they received and how they actually acted and were rewarded. The researchers found that each of these variables was associated with activity in a distinct part of the prefrontal cortex (PFC).

The bigger the prediction error in simulating other people's rewards, the more activity was observed in the (vmPFC) an area located at the base of the frontal lobe of the brain that is associated with decision making, while the larger the prediction error in simulating another's actions, the more active were the dorsomedial and dorsolateral prefrontal cortices.

The ability to attribute to others is referred to as , or 'mentalizing', and is widely thought to involve the PFC. This, however, is the first study to show that activity in the PFC encodes prediction errors of one's own rewards as well as those of the simulated decisions of other people, and that both of these signals are required for simulated learning. "We showed that simple simulation is not enough [to predict other peoples' decisions], and that the simulated other's action is used to track variations in another person's behavior," says Nakahara. "In real life, some people are similar to us but others are not. Yet, we still interact with different types of people somehow, and next we hope to understand how this is possible."

Explore further: How humans predict other's decisions

More information: Suzuki, S., Harasawa, N., Ueno, K., Gardner, J.L., Ichinohe, N., Haruno, M., Cheng, K. & Nakahara, H. Learning to simulate others' decisions. Neuron 74, 1125–1137 (2012). www.cell.com/neuron/abstract/S … -6273%2812%2900427-8

Related Stories

How humans predict other's decisions

June 20, 2012
Researchers at the RIKEN Brain Science Institute (BSI) in Japan have uncovered two brain signals in the human prefrontal cortex involved in how humans predict the decisions of other people. Their results suggest that the ...

Neural balls and strikes: Where categories live in the brain

January 15, 2012
Hundreds of times during a baseball game, the home plate umpire must instantaneously categorize a fast-moving pitch as a ball or a strike. In new research from the University of Chicago, scientists have pinpointed an area ...

Brain study shows why some people are more in tune with what they want

December 9, 2012
Wellcome Trust researchers have discovered how the brain assesses confidence in its decisions. The findings explain why some people have better insight into their choices than others.

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.