Development of new cornea endothelial cell lines provides powerful tool for understanding corneal cell biology

December 27, 2012

Human corneal endothelial cells (HCEnCs) form a monolayer of hexagonal cells whose main function is to maintain corneal clarity by regulating corneal hydration. Cell loss due to aging or corneal endothelial disorders, such as Fuchs dystrophy, can lead to cornea edema and blindness, resulting in the need for cornea transplants.

Studying human corneal endothelium has been difficult for because limited systems exist and have significant drawbacks. The major drawback is that HCEnC do not divide and there is a limited source of these cells both for patient transplantation and for study in the laboratory. This field of study is now easier.

Scientists from the Schepens Eye Research Institute, Mass. Eye and Ear, have developed of HCENC-21 and HCEnC-21T, two novel model systems for human corneal endothelium. Their findings, Telomerase Immortalization of Human Corneal Endothelial Cells Yield Functional Hexagonal Monolayers, are online in the .

A research team led by Ula Jurkunas, M.D., developed first-of their kind model systems for human corneal endothelium.

"These models mimic very well the critical characteristics and functionalities known from the tissue in the eye," Dr. Jurkunas said. "They also fulfill essential technical requirements, e.g. indefinite number of and a high rate of cell division, to be a powerful tool. They will enable cell biologists to more reliably study human corneal endothelium in health and disease. The ability to enhance HCEnC cell self renewal and growth opens a new window of development of novel regenerative therapies for corneal swelling, hopefully reducing the need for in the future."

Explore further: Regenerated cells may restore vision after corneal dysfunction

More information: www.plosone.org/article/info%3 … journal.pone.0051427

Related Stories

Regenerated cells may restore vision after corneal dysfunction

June 14, 2012
Regenerative medicine, or the use of specially grown tissues and cells to treat injuries and diseases, has been successful in treating disorders of a number of organs, including heart, pancreas, and cartilage. However, efforts ...

Corneal thickness linked to early stage Fuchs' Endothelial Corneal Dystrophy

April 9, 2012
A national consortium of researchers has published new findings that could change the standard of practice for those treating Fuchs' Endothelial Corneal Dystrophy (FECD), a disease characterized by cornea swelling that can ...

Engineered cornea more resistant to chemical injury

May 28, 2012
(Medical Xpress) -- A new study from the University of Reading has established that a prosthetic cornea made from human cells is the best model for testing how irritants and toxins cause eye injuries.

Recommended for you

Researchers identify key compounds to resolve abnormal vascular growth in AMD

August 21, 2017
A compound of specific bioactive products from a major family of enzymes reduced the severity of age-related macular degeneration (AMD) in a preclinical model, according to a new study led by Massachusetts Eye and Ear researchers. ...

World's blind population to soar: study

August 3, 2017
The world's blind will increase threefold from about 36 million today to 115 million in 2050 as populations expand and individuals grow ever older, researchers said Thursday.

Simulations signal early success for fractal-based retinal implants

July 27, 2017
Computer simulations of electrical charges sent to retinal implants based on fractal geometry have University of Oregon researchers moving forward with their eyes focused on biological testing.

Scientists regenerate retinal cells in mice

July 26, 2017
Scientists have successfully regenerated cells in the retina of adult mice at the University of Washington School of Medicine in Seattle.

Genome editing with CRISPR-Cas9 prevents angiogenesis of the retina

July 24, 2017
A research team from the Schepens Eye Research Institute of Massachusetts Eye and Ear has successfully prevented mice from developing angiogenesis of the retina—the sensory tissue at the back of the eye—using gene-editing ...

Too little vitamin D may hinder recovery of injured corneas

July 24, 2017
Injury or disease in combination with too little vitamin D can be bad for the window to your eyes.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.