A drug used to treat HIV might defuse deadly staph infections

December 14, 2012, New York University School of Medicine

A new study by NYU School of Medicine researchers suggests that an existing HIV drug called maraviroc could be a potential therapy for Staphylococcus aureus, a notorious and deadly pathogen linked to hundreds of thousands of hospitalizations each year. Their study is published online this week in Nature.

"What are the chances that a drug for HIV could possibly treat a virulent Staph infection?" asks Victor J. Torres, PhD, assistant professor of microbiology, and senior author of the study. "These findings are the result of a fantastic collaboration that we hope will result in significant clinical benefit." Staph causes , pneumonia, and food poisoning, among other illnesses, and is becoming increasingly resistant to antibiotics.

The discovery arose from a serendipitous finding that was a part of a collaborative study between Dr. Torres, a bacteriologist, and Derya Unutmaz, MD, associate professor of microbiology and pathology and medicine, whose laboratories are adjacent to each other.

They focused on a receptor called CCR5 that dots the surface of immune T cells, , and . Sixteen years ago, researchers at NYU School of Medicine discovered that CCR5 is the receptor HIV uses to gain entry into T cells in order to replicate, spread, and cause an infection that can progress into AIDS.

That same receptor has now been found to be critical to the ability of certain strains of Staph to specifically target and kill cells with CCR5, which orchestrate an against the bacteria. The scientists discovered that one of the toxins the releases, called LukED, latches on to CCR5 and subsequently punches holes through the membrane of immune cells, causing them to rapidly die. The LukED toxin belongs to a family of proteins called leukotoxins, encoded and produced by Staph to fight off the immune system's defenses.

This discovery was made after Dr. Torres asked Dr. Unutmaz and fellow HIV researcher Nathaniel Landau, PhD, professor of microbiology, if he might use some of the human immune cells they had collected over the course of their HIV studies. The laboratories of all three scientists are adjacent to each other. Dr. Torres was trying to find out which were affected by different leukotoxins. Dr. Unutmaz gave him a T cell line, which they were using for their HIV infection studies and had previously engineered to express CCR5, to test the effects of these toxins.

"Within one hour flat, with CCR5 all died when exposed to LukED" says Dr. Torres, whereas a similar T cell line that lacked the receptor was completely resistant to the toxin's effects. This observation quickly led to another set of experiments to determine that the LukED toxin was indeed interacting with the receptor and that its presence on the cell surface was necessary for the toxin to kill the cells.

The investigators then treated cells with CCR5 with maraviroc, a drug on the market that binds to CCR5 and blocks HIV infection, and then exposed the cells to the Staph toxin. The result, the scientists say, was astonishing. "It was remarkable. Maraviroc completely blocked the toxic effects of this leukotoxin at doses similar to those used to inhibit HIV infection" Dr. Unutmaz says.

"The goal in blocking the toxin with maraviroc or similar agents is to give the upper hand to the immune system to better control the infection," Dr. Torres adds. The researchers further corroborated the critical role of CCR5 in Staph infections using a mouse model. When they infected mice susceptible to Staph infection with strains that contain the LukED toxin, almost all the mice died. However, mice that were genetically engineered to lack CCR5 on their cells survived this lethal .

Based on these findings, the investigators hope that future human clinical trials will determine whether drugs that block CCR5, such as maraviroc, could help the immune system to control the infection and potentially save lives.

Explore further: HIV drug may slow down metastatic breast cancer

Related Stories

HIV drug may slow down metastatic breast cancer

June 6, 2012
The HIV drugs known as CCR5 antagonists may also help prevent aggressive breast cancers from metastasizing, researchers from the Kimmel Cancer Center at Jefferson suggest in a preclinical study published in a recent issue ...

New HIV-inhibiting protein identified

May 29, 2012
Scientists have identified a new HIV-suppressing protein in the blood of people infected with the virus. In laboratory studies, the protein, called CXCL4 or PF-4, binds to HIV such that it cannot attach to or enter a human ...

Recommended for you

War in Ukraine has escalated HIV spread in the country: study

January 15, 2018
Conflict in Ukraine has increased the risk of HIV outbreaks throughout the country as displaced HIV-infected people move from war-affected regions to areas with higher risk of transmission, according to analysis by scientists.

Researchers offer new model for uncovering true HIV mortality rates in Zambia

January 12, 2018
A new study that seeks to better ascertain HIV mortality rates in Zambia could provide a model for improved national and regional surveillance approaches, and ultimately, more effective HIV treatment strategies.

New drug capsule may allow weekly HIV treatment

January 9, 2018
Researchers at MIT and Brigham and Women's Hospital have developed a capsule that can deliver a week's worth of HIV drugs in a single dose. This advance could make it much easier for patients to adhere to the strict schedule ...

New long-acting, less-toxic HIV drug suppresses virus in humanized mice

January 8, 2018
A team of Yale researchers tested a new chemical compound that suppresses HIV, protects immune cells, and remains effective for weeks with a single dose. In animal experiments, the compound proved to be a promising new candidate ...

Usage remains low for pill that can prevent HIV infection

January 8, 2018
From gritty neighborhoods in New York and Los Angeles to clinics in Kenya and Brazil, health workers are trying to popularize a pill that has proven highly effective in preventing HIV but which—in their view—remains woefully ...

Researchers find clues to AIDS resistance in sooty mangabey genome

January 3, 2018
Peaceful co-existence, rather than war: that's how sooty mangabeys, a monkey species found in West Africa, handle infection by SIV, a relative of HIV, and avoid developing AIDS-like disease.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.