Genomic 'hotspots' offer clues to causes of autism, other disorders

December 20, 2012
Spontaneous mutations in the germline are a significant factor influencing genetic risk for autism spectrum disorders (ASDs). Using whole-genome sequencing of autism families, Michaelson et al. (pp. 1431–1442) determine the intrinsic characteristics of the genome that influence regional mutation rates and quantify the effect of paternal age on global mutation rate. Mutation rates vary widely throughout the genome, and regional hypermutation emerges as a factor determining the contribution of individual genes to risk for ASD and other disorders in the population. Cover artwork by Evgeny Buryat Onutchin. Credit: Michaelson et al., Cell. Artwork by Evgeny Buryat Onutchin

An international team, led by researchers from the University of California, San Diego School of Medicine, has discovered that "random" mutations in the genome are not quite so random after all. Their study, to be published in the journal Cell on December 21, shows that the DNA sequence in some regions of the human genome is quite volatile and can mutate ten times more frequently than the rest of the genome. Genes that are linked to autism and a variety of other disorders have a particularly strong tendency to mutate.

Clusters of mutations or "hotspots" are not unique to the autism genome but instead are an intrinsic characteristic of the , according to principal investigator Jonathan Sebat, PhD, professor of psychiatry and cellular and molecule medicine, and chief of the Beyster Center for Molecular Genomics of at UC San Diego.

"Our findings provide some insights into the underlying basis of autism—that, surprisingly, the genome is not shy about tinkering with its important genes" said Sebat. "To the contrary, disease-causing genes tend to be hypermutable."

Sebat and collaborators from Rady Children's Hospital-San Diego and BGI genome center in China sequenced the complete genomes of identical twins with and their parents. When they compared the genomes of the twins to the genomes of their parents, the scientists identified many "germline" mutations (genetic variants that were present in both twins but not present in their mother or father).

Nearly 600 – out of a total of 6 billion – were detected in the 10 pairs of identical twins sequenced in the study. An average of 60 mutations was detected in each child.

The video will load shortly
Genes implicated in autism and other human diseases are prone to frequent mutations, according to a study published by Cell Press on Dec. 20 in the journal Cell. The study suggests that elevated mutation rates in certain parts of the genome contribute to disease risk in humans. Credit: Michaelson et al., Cell

"The total number of mutations that we found was not surprising," said Sebat, "it's exactly what we would expect based on the normal human ." What the authors did find surprising was that mutations tended to cluster in certain regions of the genome. When the scientists looked carefully at the sites of mutation, they were able to determine the reasons why some genomic regions are "hot" while other regions are cold.

"Mutability could be explained by intrinsic properties of the ," said UC San Diego postdoctoral researcher Jacob Michaelson, lead author of the study. "We could accurately predict the mutation rate of a gene based on the local DNA sequence and its chromatin structure, meaning the way that the DNA is packaged."

The researchers also observed some remarkable examples of mutation clustering in an individual child, where a shower of mutations occurred all at once. "When multiple mutations occur in the same place, such an event has a greater chance of disrupting a gene," said Michaelson.

The researchers surmised that hypermutable genes could be relevant to disease. When they predicted the mutation rates for genes, the authors found that genes that have been linked to autism were more mutable than the average gene, suggesting that some of the genetic culprits that contribute to autism are mutation hotspots.

The authors observed a similar trend for other disease genes. Genes associated with dominant disorders tended to be highly mutable, while mutation rates were lower for genes associated with complex traits.

"We plan to focus on these mutation hotspots in our future studies," said Sebat. "Sequencing these regions in larger numbers of patients could enable us to identify more of the genetic risk factors for autism."

Explore further: Rare genetic mutations linked to bipolar disorder

More information: Michaelson et al.: "Whole Genome Sequencing in Autism Identifies Hotspots for De Novo Germline Mutation." dx.doi.org/10.1016/j.cell.2012.11.019

Related Stories

Rare genetic mutations linked to bipolar disorder

December 21, 2011
An international team of scientists, led by researchers at the University of California, San Diego School of Medicine, reports that abnormal sequences of DNA known as rare copy number variants, or CNVs, appear to play a significant ...

Mutations in 3 genes linked to autism spectrum disorders

April 4, 2012
Mutations in three new genes have been linked to autism, according to new studies including one with investigators at Mount Sinai School of Medicine. All three studies include lead investigators of the Autism Sequencing Consortium ...

Researchers uncover new tools for targeting genes linked to autism

June 21, 2012
UCLA researchers have combined two tools – gene expression and the use of peripheral blood -- to expand scientists' arsenal of methods for pinpointing genes that play a role in autism. Published in the June 21 online ...

60 new mutations in each of us: Speed of human mutation revealed in new family genetic research

June 12, 2011
(Medical Xpress) -- Each one of us receives approximately 60 new mutations in our genome from our parents. This striking value is reported in the first-ever direct measure of new mutations coming from mother and father in ...

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.