In US first, Johns Hopkins surgeons implant brain 'pacemaker' for Alzheimer's disease

December 5, 2012, Johns Hopkins University School of Medicine

Researchers at Johns Hopkins Medicine in November surgically implanted a pacemaker-like device into the brain of a patient in the early stages of Alzheimer's disease, the first such operation in the United States. The device, which provides deep brain stimulation and has been used in thousands of people with Parkinson's disease, is seen as a possible means of boosting memory and reversing cognitive decline.

The surgery is part of a federally funded, multicenter clinical trial marking a new direction in clinical research designed to slow or halt the ravages of the disease, which slowly robs its mostly elderly victims of a lifetime of memories and the ability to perform the simplest of daily tasks, researchers at Johns Hopkins say. Instead of focusing on drug treatments, many of which have failed in recent clinical trials, the research focuses on the use of the low-voltage electrical charges delivered directly to the brain. There is no cure for Alzheimer's disease.

As part of a preliminary safety study in 2010, the devices were implanted in six Alzheimer's disease in Canada. Researchers found that patients with mild forms of the disorder showed sustained increases in , an indicator of , over a 13-month period. Most Alzheimer's disease patients show decreases in glucose metabolism over the same period.

The first U.S. patient in the new trial underwent surgery at The Johns Hopkins Hospital, and a second patient is scheduled for the same procedure in December. The surgeries at Johns Hopkins are being performed by William S. Anderson, M.D.

"Recent failures in Alzheimer's disease trials using drugs such as those designed to reduce the buildup of beta in the brain have sharpened the need for alternative strategies," says Paul B. Rosenberg, M.D., an associate professor of psychiatry and at the Johns Hopkins University School of Medicine, and site director of the trial's Johns Hopkins location. "This is a very different approach, whereby we are trying to enhance the function of the brain mechanically. It's a whole new avenue for potential treatment for a disease becoming all the more common with the aging of the population."

Some 40 patients are expected to receive the deep implant over the next year or so at Johns Hopkins and four other institutions in North America as part of the ADvance Study led by Constantine G. Lyketsos, M.D., M.H.S., a professor of psychiatry and behavioral sciences at the Johns Hopkins University School of Medicine, and Andres Lozano, M.D., Ph.D., chairman of the neurology department at the University of Toronto. Only patients whose cognitive impairment is mild enough that they can decide on their own to participate will be included in the trial.

Other sites performing the operation, supported by the National Institutes of Health's National Institute on Aging (R01AG042165), are the University of Toronto, the University of Pennsylvania, the University of Florida, and Banner Health System in Phoenix, Ariz. The medical device company, Functional Neuromodulation Ltd., is also supporting the trial.

"We are very excited about the possibilities of this potentially new way to treat Alzheimer's," says Lyketsos, director of the Johns Hopkins Memory and Alzheimer's Treatment Center in Baltimore.

While experimental for Alzheimer's patients, more than 80,000 people with the neurodegenerative disorder Parkinson's disease have undergone the procedure over the past 15 years, with many reporting fewer tremors and requiring lower doses of medication afterward, Lyketsos says. Other researchers are testing deep brain stimulation to control depression and obsessive-compulsive disorder resistant to other therapies.

The surgery involves drilling holes into the skull to implant wires into the fornix on either side of the brain. The fornix is a brain pathway instrumental in bringing information to the hippocampus, the portion of the brain where learning begins and memories are made, and where the earliest symptoms of Alzheimer's appear to arise. The wires are attached to a -like device, the "stimulator," which generates tiny electrical impulses into the brain 130 times a second. The patients don't feel the current, Rosenberg says.

For the trial, all of the patients will be implanted with the devices. Half will have their stimulators turned on two weeks after surgery, while the other half will have their stimulators turned on after one year. Neither the patients nor the doctors treating them will know which group gets an early or later start.

" might prove to be a useful mechanism for treating Alzheimer's disease, or it might help us develop less invasive treatments based on the same mechanism," Rosenberg says.

By 2050, the number of people age 65 and older with Alzheimer's disease may triple, experts say, from 5.2 million to a projected 11 million to 16 million, unless effective treatments are found.

Explore further: Deep brain stimulation may hold promise for mild Alzheimer's disease

Related Stories

Deep brain stimulation may hold promise for mild Alzheimer's disease

May 7, 2012
A study on a handful of people with suspected mild Alzheimer's disease (AD) suggests that a device that sends continuous electrical impulses to specific "memory" regions of the brain appears to increase neuronal activity. ...

Drug improves brain function in condition that leads to Alzheimer's

July 20, 2011
An existing anti-seizure drug improves memory and brain function in adults with a form of cognitive impairment that often leads to full-blown Alzheimer's disease, a Johns Hopkins University study has found.

Recommended for you

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

Brain zaps may help curb tics of Tourette syndrome

January 16, 2018
Electric zaps can help rewire the brains of Tourette syndrome patients, effectively reducing their uncontrollable vocal and motor tics, a new study shows.

Researchers identify protein involved in cocaine addiction

January 16, 2018
Mount Sinai researchers have identified a protein produced by the immune system—granulocyte-colony stimulating factor (G-CSF)—that could be responsible for the development of cocaine addiction.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.