Researchers report progress in quest to create objective method of detecting pain

December 17, 2012, Stanford University Medical Center

A method of analyzing brain structure using advanced computer algorithms accurately predicted 76 percent of the time whether a patient had lower back pain in a new study by researchers from the Stanford University School of Medicine.

The study, which will be published online Dec. 17 in , reported that using these algorithms to read may be an early step toward providing an objective method for diagnosing chronic pain.

"People have been looking for an objective pain detector—a 'pain scanner'—for a long time," said Sean Mackey, MD, PhD, chief of the Division of and professor of anesthesiology, pain and perioperative medicine, and of neurosciences and neurology. "We're still a long way from that, but this method may someday augment self-reporting as the primary way of determining whether a patient is in chronic pain."

The need for a better way to objectively measure pain instead of relying solely on self-reporting has long been acknowledged. But the highly subjective nature of pain has made this an elusive goal. Advances in have initiated a debate over whether this may be possible. Such a tool would be particularly useful in treating very young or very old patients or others who have difficulty communicating, Mackey said.

In a study published last year in , Mackey and colleagues used to analyze scans of the brain to accurately measure thermal pain in research subjects 81 percent of the time. But the question remained whether this could be a successful method for measuring chronic pain.

The goal of the new study was to accurately identify patients with lower back pain vs. healthy individuals on the basis of structural changes to the brain, and also to investigate possible pathological differences across the brain.

Researchers conducted of 47 subjects who had lower back pain and 47 healthy subjects. Both groups were screened for medication use and mood disorders. The average age was 37.

The idea was to "train" a linear support vector machine—a computer algorithm invented in 1995—on one set of individuals, and then use that computer model to accurately read the brain scans and classify pain in a completely new set of individuals.

The method successfully predicted the patients with lower back pain 76 percent of the time.

"Lower back pain is the most common chronic condition we deal with," Mackey said. "In many cases, we don't understand the cause. What we have learned is that the problem may not be in the back, but in the amplification coming from the back to the brain and nervous system. In this study, we did identify brain regions we think are playing a role in this phenomena."

An estimated 100 million Americans suffer from chronic pain, and chronic low back pain, in particular, is the most common cause for activity limitation in those younger than 45, according to the study. The prevalence of lower back pain among the U.S. population has also risen significantly, from 3.9 percent in 1992 to 10.2 percent in 2006.

"Previous studies have shown that there are functional changes in the brain of a chronic pain patient, and we show that structural changes may be used to differentiate between those with chronic lower back pain and those without," said former research assistant Hoameng Ung, the first author of the study who is now an MD/PhD student at the University of Pennsylvania School of Medicine. "This observation also suggests a role of the central nervous system in chronic pain, and that some types of chronic low back pain may reflect pathology not within the back, but instead within the brain."

Study results suggested that lower back pain is characterized by a pattern of structural changes in the gray matter, the nervous tissue of the brain, showing indication of disease.

"Our investigation ... suggests that the pathology of involves changes in gray matter that are present throughout a distributed system of pain processing and -associated areas within the ," the study stated.

Explore further: Does that hurt? Objective way to measure pain being developed at Stanford

Related Stories

Does that hurt? Objective way to measure pain being developed at Stanford

September 13, 2011
Researchers from the Stanford University School of Medicine have taken a first step toward developing a diagnostic tool that could eliminate a major hurdle in pain medicine — the dependency on self-reporting to measure ...

Treatment of chronic low back pain can reverse abnormal brain activity and function

May 17, 2011
It likely comes as no surprise that low back pain is the most common form of chronic pain among adults. Lesser known is the fact that those withchronic pain also experience cognitive impairments and reduced gray matter in ...

New imaging technique captures brain activity in patients with chronic low back pain

July 27, 2011
Research from Brigham and Women's Hospital (BWH) uses a new imaging technique, arterial spin labeling, to show the areas of the brain that are activated when patients with low back pain have a worsening of their usual, chronic ...

Study shows early brain changes predict which patients develop chronic pain

July 1, 2012
When people have similar injuries, why do some end up with chronic pain while others recover and are pain free? The first longitudinal brain imaging study to track participants with a new back injury has found the chronic ...

Negative emotions influence brain activity during anticipation and experience of pain

September 19, 2011
Neuroticism — the tendency to experience negative emotions — significantly affects brain processing during pain, as well as during the anticipation of pain, according to a new study in Gastroenterology, the official ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.