Researchers identify new target for common heart condition

January 8, 2013, University of Bristol

Researchers have found new evidence that metabolic stress can increase the onset of atrial arrhythmias, such as atrial fibrillation (AF), a common heart condition that causes an irregular and often abnormally fast heart rate. The findings may pave the way for the development of new therapies for the condition which can be expected to affect almost one in four of the UK population at some point in their lifetime.

The British Heart Foundation (BHF) study, led by University of Bristol scientists and published in Circulation: Arrhythmia and Electrophysiology, found that —a condition induced by insufficient to the heart (e.g. following blockage of a coronary artery)—caused marked changes in the electrical activity of the heart's atria (the upper chambers of the heart).

While it has been recognised for many years that metabolic stress causes ventricular arrhythmias— that originate in the two lower chambers of the heart (the ventricles) and which form the basis to heart attacks—it is the first time it has been demonstrated for arrhythmias in the atria.

The research team led by Dr Andrew James from the University's School of Physiology and Pharmacology together with Professor Saadeh Suleiman in the School of Clinical Sciences, examined the contribution of a particular kind of protein underlying the electrical activity of the atria during metabolic stress.

These proteins, known as KATP channels enable cells to respond to changes in metabolism. ATP (adenosine triphosphate) is a small molecule that represents the 'energy currency' for and when ATP levels inside cells fall, KATP channels are activated. For example, KATP channels in the pancreas are involved in the regulation of insulin secretion and drugs targeting these channels are used to treat .

Dr Andrew James, the study's lead author, said: "It is well-established that KATP channels in the ventricles of the heart can become activated following metabolic stress caused by blockage of a coronary artery. In principle, their activation could protect the heart muscle cells against metabolic stress-induced damage. On the other hand, the activation of ventricular KATP channels can contribute to disturbances in the electrical activity of the heart known as arrhythmias.

"Arrhythmias in the ventricles can be very dangerous, leading to ventricular fibrillation and death. Atrial arrhythmias, such as (AF), are not usually immediately fatal but they are very common and a major cause of stroke. Notably, KATP channels are also found in the atria but, in contrast to the ventricles, their role in atrial arrhythmias remains unknown."

The findings show that metabolic stress caused marked changes in the electrical activity of the atrium consistent with the activation of KATP channels. Electrical stimulation was applied to try to evoke atrial arrhythmia. It was possible to induce atrial arrhythmia during, but not before, metabolic stress.

Importantly, blockade of KATP channels with drugs used to treat patients with type 2 diabetes (glibenclamide and tolbutamide), completely reversed the effects of metabolic stress on the of the atrium and prevented the induction of atrial arrhythmia. The anti-diabetic drugs were without effect in the absence of metabolic stress.

The findings represent a 'proof-of-principle' (the stage at which any new drug must undergo before full-scale clinical trials can begin) that atrial KATP channels can be activated by metabolic stress and facilitate atrial arrhythmias. Thus, atrial KATP channels may represent a target for drugs for the treatment of atrial arrhythmias, such as atrial fibrillation.

However, Dr James added: "Further studies are required and a key point to address will be whether differences exist between the properties of atrial, ventricular and pancreatic KATP channels that might be exploited to produce an atrial-selective drug. Perhaps these channels might be useful as targets to treat atrial arrhythmias."

Professor Jeremy Pearson, Associate Medical Director at the BHF, commented: "Atrial fibrillation is a very common irregular heart rhythm which greatly increases the risk of stroke. This study brings us closer to understanding how it develops, in particular in people whose hearts are under greater pressure due to the effects of a previous history of disease. It's vital that we continue to improve our understanding of this condition so we can find new treatments for patients in the future."

Explore further: Atrial arrhythmias detected by pacemakers increase risk of stroke

More information: The BHF-funded study, entitled 'Activation of Glibenclamide-Sensitive KATP Channels during β-Adrenergically-Induced Metabolic Stress Produces a Substrate for Atrial Tachyarrhythmia' is published online in the journal Circulation: Arrhythmia and Electrophysiology.

Related Stories

Atrial arrhythmias detected by pacemakers increase risk of stroke

January 11, 2012
An irregular heartbeat that you don't even feel but can be picked up by a pacemaker is associated with a significantly increased risk of stroke, says a new McMaster University study.

The Medical Minute: Atrial Fibrillation -- What is It?

October 6, 2011
Atrial fibrillation (AF) is the most common heart rhythm disturbance in the United States and affects 2 to 4 million Americans. It is usually a disease of aging, however it can affect people of all ages -- 1 percent of people ...

Recommended for you

A nanoparticle inhalant for treating heart disease

January 18, 2018
A team of researchers from Italy and Germany has developed a nanoparticle inhalant for treating people suffering from heart disease. In their paper published in the journal Science Translational Medicine, the group describes ...

Starting periods before age of 12 linked to heightened risk of heart disease and stroke

January 15, 2018
Starting periods early—before the age of 12—is linked to a heightened risk of heart disease and stroke in later life, suggests an analysis of data from the UK Biobank study, published online in the journal Heart.

'Decorated' stem cells could offer targeted heart repair

January 10, 2018
Although cardiac stem cell therapy is a promising treatment for heart attack patients, directing the cells to the site of an injury - and getting them to stay there - remains challenging. In a new pilot study using an animal ...

Two simple tests could help to pinpoint cause of stroke

January 10, 2018
Detecting the cause of the deadliest form of stroke could be improved by a simple blood test added alongside a routine brain scan, research suggests.

Exercise is good for the heart, high blood pressure is bad—researchers find out why

January 10, 2018
When the heart is put under stress during exercise, it is considered healthy. Yet stress due to high blood pressure is bad for the heart. Why? And is this always the case? Researchers of the German Centre for Cardiovascular ...

Heart-muscle patches made with human cells improve heart attack recovery

January 10, 2018
Large, human cardiac-muscle patches created in the lab have been tested, for the first time, on large animals in a heart attack model. This clinically relevant approach showed that the patches significantly improved recovery ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.