Discovery promises to improve drugs used to fight cancer, other diseases

January 11, 2013 by James Hataway

(Medical Xpress)—Even when at rest, the human body is a flurry of activity. Like a microscopic metropolis locked in a state of perpetual rush hour traffic, the trillions of cells that make us who we are work feverishly policing the streets, making repairs, building new structures and delivering important cargo throughout the bustling organic society.

For everything to work properly there must be something to organize and direct the various workers. Enter protein kinases. Like specialized traffic signals, this huge class of proteins is critical for many aspects of , telling them when to begin work and when to stop.

Now, University of Georgia researchers have discovered that a little-studied part of the protein kinases that once appeared non-functional may actually control the most critical functions of the entire molecule. Their research promises to help improve drugs used to fight a variety of life-threatening diseases, from diabetes to cancer.

"The overall goal of this project was to better understand how these proteins function and what mechanisms control their function," said Natarajan Kannan, a Georgia Cancer Coalition Distinguished Scholar and assistant professor of biochemistry and molecular biology in the Franklin College of Arts and Sciences. "Our research shows that these little-studied dark regions of the protein are directly affecting the molecule's function."

Normally functioning protein kinases perform duties central to the everyday cellular operations within our bodies, but when they become dysfunctional, they can play a major role in the development of numerous serious diseases, including Alzheimer's, diabetes, and many forms of cancer.

Scientists have recognized the value of the proteins as therapeutic targets for decades, and numerous drugs, known as , are commonly prescribed in an attempt to slow or stop the rogue kinases that cause disease. The UGA team hopes its discovery will not only lead to new therapies but also help improve those already in existence.

"This opens a new front on the battle against many diseases, particularly cancer," said Krishnadev Oruganty, a postdoctoral research associate in biochemistry and molecular biology and lead author of a paper detailing the discovery published on Dec. 31 in the early edition of the Proceedings of the National Academy of Sciences.

Developing entirely new drugs is an extraordinarily lengthy and expensive process, but this new understanding of how protein kinases switch between "on" and "off" states will make it possible for researchers to modify existing drugs to make them perform better without significant investment.

"These are a very important class of proteins for biomedical industries, and the pharmaceutical industry has already invested billions of dollars in drugs that target these proteins," said Kannan, who is part of the UGA Cancer Center and the Institute of Bioinformatics. "This discovery will have a huge impact on how pharmaceutical companies develop drugs, because subtle modifications of these drugs will make it easier to control them, which will boost their effectiveness."

Kannan and the interdisciplinary team of UGA researchers working on the project are already beginning to design drugs that can selectively inhibit the rogue proteins that cause disease, but they caution that more research is needed to perfect their approach.

Nevertheless, they are confident that this discovery will have a profound impact on the pharmaceutical industry, and on the understanding of the elementary components of life.

"Every fundamental signaling pathway in our cells is controlled by these proteins," Kannan said. "Gaining a deeper understanding of how these kinases work will open doors to a myriad of important new discoveries."

Explore further: Map of substrate-kinase interactions may lead to more effective cancer drugs

Related Stories

Map of substrate-kinase interactions may lead to more effective cancer drugs

March 27, 2012
(Medical Xpress) -- Later-stage cancers thrive by finding detours around roadblocks that cancer drugs put in their path, but a Purdue University biochemist is creating maps that will help drugmakers close more routes and ...

Researchers identify drivers of sarcoma growth and survival

May 2, 2012
To better understand the signaling pathways active in sarcomas, researchers at Moffitt Cancer Center used state-of-the-art mass spectrometry-based proteomics to characterize a family of protein enzymes that act as "on" or ...

Drugs used to overcome cancer may also combat antibiotic resistance: researchers

December 22, 2011
Drugs used to overcome cancer may also combat antibiotic resistance, finds a new study led by Gerry Wright, scientific director of the Michael G. DeGroote Institute for Infectious Disease Research at McMaster University.

New protein structure model to inhibit cancer

July 29, 2011
Researchers at the University of Hertfordshire have developed a new structural model of a protein, which makes it possible to develop more effective drugs to target diseases such as cancer, heart disease and influenza.

Recommended for you

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.